Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于Davidenkov本构模型的三维沉积盆地非线性地震动谱元法模拟

巴振宁, 赵靖轩, 桑巧稚, 梁建文

巴振宁, 赵靖轩, 桑巧稚, 梁建文. 基于Davidenkov本构模型的三维沉积盆地非线性地震动谱元法模拟[J]. 岩土工程学报, 2024, 46(7): 1387-1397. DOI: 10.11779/CJGE20230582
引用本文: 巴振宁, 赵靖轩, 桑巧稚, 梁建文. 基于Davidenkov本构模型的三维沉积盆地非线性地震动谱元法模拟[J]. 岩土工程学报, 2024, 46(7): 1387-1397. DOI: 10.11779/CJGE20230582
BA Zhenning, ZHAO Jingxuan, SANG Qiaozhi, LIANG Jianwen. Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1387-1397. DOI: 10.11779/CJGE20230582
Citation: BA Zhenning, ZHAO Jingxuan, SANG Qiaozhi, LIANG Jianwen. Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1387-1397. DOI: 10.11779/CJGE20230582

基于Davidenkov本构模型的三维沉积盆地非线性地震动谱元法模拟  English Version

基金项目: 

国家自然科学基金项目 52178495

国家自然科学基金地震科学联合基金(重点)项目 U2139208

详细信息
    作者简介:

    巴振宁(1980—),男,博士,教授,主要从事大尺度复杂场地宽频地震动模拟方面的研究工作。E-mail: bazhenning_001@163.com

  • 中图分类号: TU435

Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method

  • 摘要: 为研究三维沉积盆地内低波速土体非线性反应对近断层地震动的影响,实现基于物理的全过程(震源破裂-地震波传播-复杂场地效应-近地表土体非线性反应)三维复杂场地地震动模拟,在谱元SPECFEM3D程序中进行二次开发,采用目前具有丰富工程应用且适用于不同土类的三参数Martin-Seed-Davidenkov本构模型,结合已有的不规则加卸载准则,通过在程序中修改每个显式时间步下的应力增量,实现了土体剪切模量的实时更新和加卸载拐点的有效识别,将土体的非线性特性纳入到三维复杂场地地震动模拟中。首先将建立的三维模型通过施加合理边界退化至一维,与一维非线性动力分析软件DEEPSOIL的结果进行了对比,验证了开发的正确性;进而将开发的程序应用于中国滇西南地区施甸盆地的非线性地震动模拟,并与相应的线性结果进行了对比。结果显示,受土体非线性的影响,施甸地区PGA和PGV较线性结果峰值均降低,且非线性土体对PGV的影响更加明显,较线性结果最大降低约30%;沉积非线性使沉积内部观测点的速度及其反应谱幅值降低,且特征频率向长周期方向移动。
    Abstract: In order to study the influences of nonlinear response of low-wave velocity soil on near-fault ground motion in three-dimensional sedimentary basin, and realize the simulation of three-dimensional complex site ground motion based on the whole process of physics (source rupture-seismic wave propagation-complex site effect-near-surface soil nonlinear response), the secondary development is carried out in the spectral element method code-SPECFEM3D. The three-parameter Martin-Seed-Davidenkov constitutive model with generous engineering applications and suitable for different soil types is adopted. Based on the existing irregular loading and unloading criteria, the real-time updating of shear modulus of soil and the effective identification of loading and unloading inflection points are realized by modifying the stress increment at each explicit time step in the code. The nonlinear characteristics of soil are incorporated into the three-dimensional complex site ground motion simulation. The established three-dimensional model is first degenerated to one-dimensional one by applying a reasonable boundary, and compared with the results of one-dimensional nonlinear dynamic analysis software DEEPSOIL to verify the correctness of the development. Furthermore, the developed code is applied to the nonlinear ground motion simulation of the Shidian Basin in southwestern Yunnan province, China, and compared with the corresponding linear results. The results show that the peak values of acceleration and velocity in Shidian area are lower than those of linear results, and the influences of nonlinear soil on PGV are more obvious, which is about 30% lower than that of linear results. The deposition nonlinearity reduces the velocity and amplitude of response spectra of the receivers inside the deposition, and the characteristic frequency moves to the long period direction.
  • 致谢: 感谢中国地震局工程力学研究所为本研究提供了2001年4月12日施甸5.9级地震近场区域的地震观测记录。
  • 图  1   谱元法中非线性本构开发流程

    Figure  1.   Development process of nonlinear constitutive in spectral element method

    图  2   与DEEPSOIL对比验证的SPECFEM3D三维模型和入射Ricker波形

    Figure  2.   SPECFEM3D 3D model verified by comparison with DEEPSOIL (a) and incident Ricker waveform (b)

    图  3   给定应变路径下基于Masing准则和本文不规则加卸载准则的滞回曲线对比

    Figure  3.   Comparison of hysteresis curves based on Masing criterion and irregular loading and unloading criterion under given strain path

    图  4   不同强度地震动下SPECFE3D和DEEPSOIL的地表原点处水平加速度对比

    Figure  4.   Comparison of horizontal acceleration of SPECFE3D and DEEPSOIL under different intensity ground motions

    图  5   施甸盆地模拟研究区域

    Figure  5.   Simulation study area of Shidian Basin

    图  6   场地土的动剪切模量比与阻尼比曲线

    Figure  6.   Curves of shear modulus ratio and damping ratio of site soils

    图  7   2001年施甸5.9级地震震源时空分布

    Figure  7.   Spatial-temporal distribution of 2001 Shidian 5.9 earthquake

    图  8   地震动时程、反应谱模拟结果与观测记录对比

    Figure  8.   Comparison among simulated ground motion time history, Fourier amplitude spectra and ground motion records

    图  9   地表EW水平方向速度波场快照(每时刻第一和第二行分别对应线性和非线性结果)

    Figure  9.   Snapshot of surface EW velocity wave field (first and second lines correspond to linear and nonlinear results respectively at each moment)

    图  10   模拟区域以及盆地范围内的地表PGA结果(左图为线性结果,右图为非线性结果)

    Figure  10.   PGA results in simulated area and basin (left figure is a linear result, and right figure is a nonlinear result)

    图  11   模拟区域以及盆地范围内的地表PGV结果(左图为线性结果,右图为非线性结果)

    Figure  11.   PGV results in simulated area and basin (left figure is a linear result, and right figure is a nonlinear result)

    图  12   盆地内地表点#1~#6处速度三分量时程(图 5中对应盆地内地表观测点#1~#6)

    Figure  12.   Three-component time histories of velocity at surface points #1~#6 in basin (Figure 5 corresponds to surface receivers #1~#6 in basin)

    图  13   盆地内地表点#1~#6处速度反应谱(图 5中对应盆地内地表观测点#1~#6)

    Figure  13.   Response spectral velocities of surface points #1~#6 in basin (Figure 5 corresponds to surface receivers #1~#6 in the basin)

    表  1   施甸盆地覆盖层及地壳层材料参数

    Table  1   Wave velocity structure of Shidian Basin and crustal layers

    深度/km vP/(m·s-1) vs/(m·s-1) 密度/(kg·m-3) QP QS
    沉积 1100 500 1800 100 50
    3 4570 2670 2300 534 267
    5 4626 2868 2572 574 287
    8 5577 3278 2600 654 327
    10 5898 3500 2676 700 350
    15 6013 3509 2750 716 358
    20 6288 3654 2803 732 366
    下载: 导出CSV

    表  2   施甸5.9级地震全局震源参数

    Table  2   Global source parameters of Shidian M5.9 earthquake

    走向/(°) 倾角/(°) 滑动角/(°) 断层面长度/km 断层面宽度/km 震中深度/km 破裂方式
    161 65 -150 8.1 7.9 7.5 中心破裂
    下载: 导出CSV

    表  3   施甸5.9级地震局部震源参数

    Table  3   Local source parameters of Shidian M5.9 earthquake

    局部参数 单位 定标律 参数值
    面积Sm km2 lgSm=lgS–0.80 9.10
    平均错动量Dm cm lgDm=lgD+0.39 46.66
    长度Lm km lgLm=lgL–0.45 2.68
    宽度Wm km Wm=Sm/Lm 3.40
    沿走向中心Xm km lgXm=lgL–0.31 3.79
    沿倾向中心Ym km lgYm=lgW–0.35 3.79
    下载: 导出CSV
  • [1] 王冲, 齐文浩, 党鹏飞, 等. 基于盆地效应的抗震设防研究之若干进展[J]. 世界地震工程, 2022, 38(3): 221-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202203024.htm

    WANG Chong, QI Wenhao, DANG Pengfei, et al. Some advances in research on seismic fortification based on basin effect[J]. World Earthquake Engineering, 2022, 38(3): 221-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202203024.htm

    [2]

    WALD D J, GRAVES R W. The seismic response of the Los Angeles Basin, California[J]. Bulletin of the Seismological Society of America, 1998, 88(2): 337-356. doi: 10.1785/BSSA0880020337

    [3]

    OLSEN K B, DAY S M, MINSTER J B, et al. Strong shaking in Los Angeles expected from southern San Andreas earthquake[J]. Geophysical Research Letters, 2006, 33(7): L07305.

    [4]

    IKEGAMI Y, KOKETSU K, KIMURA T, et al. Finite-element simulations of long-period ground motions: Japanese subduction-zone earthquakes and the 1906 San Francisco earthquake[J]. Journal of Seismology, 2008, 12(2): 161-172. doi: 10.1007/s10950-008-9091-5

    [5]

    KOMATITSCH D. Simulations of ground motion in the los angeles basin based upon the spectral-element method[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 187-206. doi: 10.1785/0120030077

    [6]

    AKI K. A perspective on the history of Strong Motion Seismology[J]. Physics of the Earth and Planetary Interiors, 2003, 137(1/2/3/4): 5-11.

    [7]

    XU J F, BIELAK J, GHATTAS O, et al. Three-dimensional nonlinear seismic ground motion modeling in basins[J]. Physics of the Earth and Planetary Interiors, 2003, 137(1/2/3/4): 81-95.

    [8]

    TABORDA R, LÓPEZ J C, KARAOĞLU H, et al. Speeding up Finite Element Wave Propagation for Large-Scale Earthquake Simulations[R]. Pittsburgh: Carnegie Mellon University, 2010.

    [9]

    ROTEN D, OLSEN K B, DAY S M, et al. Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity[J]. Geophysical Research Letters, 2014, 41(8): 2769-2777. doi: 10.1002/2014GL059411

    [10]

    DUPROS F, DE MARTIN F, FOERSTER E, et al. High-performance finite-element simulations of seismic wave propagation in three-dimensional nonlinear inelastic geological media[J]. Parallel Computing, 2010, 36(5/6): 308-325.

    [11]

    FU H H, HE C H, CHEN B W, et al. 18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios[C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, 2017.

    [12]

    ESMAEILZADEH A, MOTAZEDIAN D, HUNTER J. 3D nonlinear ground-motion simulation using a physics-based method for the kinburn basin[J]. Bulletin of the Seismological Society of America, 2019: 109(4): 1282-1311.

    [13]

    CHEN Z W, HUANG D R, WANG G. Large-scale ground motion simulation of the 2016 Kumamoto earthquake incorporating soil nonlinearity and topographic effects[J]. Earthquake Engineering & Structural Dynamics, 2023, 52(4): 956-978.

    [14] 陈国兴, 庄海洋. 基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J]. 岩土工程学报, 2005, 27(8): 860-864. doi: 10.3321/j.issn:1000-4548.2005.08.002

    CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860-864. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.08.002

    [15]

    MIAO Y, ZHONG Y, RUAN B, et al. Seismic response of a subway station in soft soil considering the structure-soil-structure interaction[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2020, 106: 103629.

    [16]

    LIN H, PAN X. Three dimensional seismic response analysis of complicated metro station with shallow depth[J]. Applied Mechanics and Materials, 2014, 638: 1905-1910.

    [17]

    MARTINP P, SEED H B. A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Deposits[R]. Berkeley: University of California, Berkeley, 1978.

    [18]

    PYKE R M. Nonlinear soil models for irregular cyclic loadings[J]. Journal of the Geotechnical Engineering Division, 1979, 105(6): 715-726. doi: 10.1061/AJGEB6.0000820

    [19] 赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. doi: 10.11779/CJGE201705013

    ZHAO Dingfeng, RUAN Bin, CHEN Guoxing, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) doi: 10.11779/CJGE201705013

    [20]

    TONG P, CHEN C W, KOMATITSCH D, et al. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophysical Journal International, 2014, 197(1): 369-395. doi: 10.1093/gji/ggt508

    [21] 李雪强. 沉积盆地地震效应研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2011.

    LI Xueqiang. Study on Seismic Effect of Sedimentary Basin[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2011. (in Chinese)

    [22]

    DAY S M. Memory-efficient simulation of anelastic wave propagation[J]. The Bulletin of the Seismological Society of America, 2001, 91(3): 520-531. doi: 10.1785/0120000103

    [23]

    DARENDELIM B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[M]. Austin : The University of Texas at Austin, 2001.

    [24] 彭盛恩, 王志佳, 廖蔚茗, 等. 土的动剪切模量比和阻尼比的经验模型研究[J]. 地下空间与工程学报, 2014, 10(3): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201403013.htm

    PENG Sheng'en, WANG Zhijia, LIAO Weiming, et al. A study on empirical models of dynamic shear modulus ratio and damping ratio of soil[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(3): 566-572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201403013.htm

    [25] 巴振宁, 赵靖轩, 张郁山, 等. 基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟[J]. 地球物理学报, 2023, 66(3): 1125-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202303020.htm

    BA Zhenning, ZHAO Jingxuan, ZHANG Yushan, et al. Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM 3D[J]. Chinese Journal of Geophysics, 2023, 66(3): 1125-1138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202303020.htm

    [26] 曹泽林. 基于FK法的三分量宽频带强地震动场合成[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    CAO Zelin. Synthesis of Three-Component Broadband Strong Ground Motion Field Based on FK Approach[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)

  • 期刊类型引用(2)

    1. 宝鑫,刘晶波,李述涛,陆喜欢,王菲. 地下结构整体式反应位移法的改进. 工程力学. 2023(01): 76-86 . 百度学术
    2. 肖鑫华. 基于数值模拟对深埋引水隧洞地震响应研究. 水利科技与经济. 2022(12): 105-109+115 . 百度学术

    其他类型引用(7)

图(13)  /  表(3)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  58
  • PDF下载量:  66
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-06-24
  • 网络出版日期:  2024-07-11
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回