Algorithm for resultant force of active soil pressure of excavations adjacent to underground subway stations
-
摘要: 针对有限土体主动土压力合力计算公式复杂的问题,以既有地铁车站邻域内新建基坑工程为依托,根据既有地铁车站与基坑的位置关系提出多种有限土体破坏模式,采用薄层微元法,考虑土体与结构界面摩擦作用,建立主动土压力合力计算方法。通过调整新建与既有结构空间位置关系,得到了主动土压力合力等值图,并对其开展了参数分析,提出了主动土压力简便计算方法。研究结果表明:①提出了5种有限土体破坏模式,建立了相应的主动土压力计算公式;②随着近接距离的增加,主动土压力逐渐增大;随着既有地铁车站覆土厚度的增加,靠近基坑的时候主动土压力逐渐增大,远离基坑侧的主动土压力先增大后减小最后增大;③基坑深度对主动土压力影响大,内摩擦角有影响,墙土摩擦角基本上没有影响;④给出了有限土体主动土压力合力空间位置关系系数建议取值情况。通过以上研究,提出了一种简便的有限土体主动土压力合力计算方法,可以为近接工程设计与施工提供参考。Abstract: Aiming at the problem of complex formula for calculating the resultant force of active soil pressure of limited soil, based on the newly built excavations in the vicinity of subway stations, multiple limited soil failure modes are proposed based on the positional relationship between the existing subway stations and the excavations. The thin-layer microelement method is used to consider the frictional effects between the soil and the structural interface, and a method for calculating the combined force of active soil pressure is established. By adjusting the spatial position relationship between the newly built and existing structures, an active soil pressure contour map is obtained, and the parameter analysis is conducted. Furthermore, a simple calculation method for active soil pressure is put forward. The research results indicate that: (1) Five finite soil failure modes are proposed, and the corresponding formulas for calculating the active soil pressure are established. (2) As the proximity distance increases, the active soil pressure gradually increases. As the thickness of the existing subway station cover increases, the active soil pressure gradually increases when approaching the excavation, and the active soil pressure on the side far from the excavation pit first increases, then decreases, and finally increases. (3) The depth of the excavation has a significant impact on the active soil pressure, the internal friction angle has an impact on the active soil pressure, and the wall-soil friction angle has basically no effect on the active soil pressure. (4) The value of the spatial position relationship coefficient of the combined force of active soil pressure is given. Through the above research, a simple method for the combined force of active pressure of limited soil is proposed to provide reference for the design and construction of adjacent projects.
-
Keywords:
- excavation engineering /
- adjacent project /
- limited soil /
- active soil pressure /
- contour map
-
-
表 1 H+D=20 m时空间位置关系系数λ建议值
Table 1 Suggested values of coefficient of spatial position relationship when H+D=20 m
(单位: m) hj b 3 5 7 9 11 13 15 ≥17 3 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1 6 0.4 0.7 0.7 0.8 0.9 0.9 0.9 1 9 0.4 0.8 0.8 0.9 0.9 1 1 1 12 0.5 0.9 0.9 1 1 1 1 1 15 0.7 1 1 1 1 1 1 1 ≥18 1 1 1 1 1 1 1 1 表 2 H+D=25 m时空间位置关系系数λ建议值
Table 2 Suggested values of coefficient of spatial position relationship when H+D=25 m
(单位: m) hj b 3 5 7 9 11 13 15 ≥17 3 0.4 0.5 0.6 0.6 0.7 0.8 0.8 1 6 0.4 0.5 0.6 0.7 0.8 0.8 0.9 1 9 0.5 0.6 0.7 0.8 0.9 0.9 0.9 1 12 0.6 0.7 0.8 0.9 0.9 1 1 1 15 0.7 0.8 0.9 0.9 1 1 1 1 18 0.8 0.9 1 1 1 1 1 1 ≥21 1 1 1 1 1 1 1 1 表 3 H+D=30 m时空间位置关系系数λ建议值
Table 3 Suggested values of coefficient of spatial position relationship when H+D=30 m
(单位: m) hj b 3 7 11 15 19 23 ≥27 3 0.4 0.5 0.6 0.7 0.8 0.9 1 6 0.4 0.5 0.7 0.8 0.9 0.9 1 9 0.4 0.6 0.7 0.8 0.9 1 1 12 0.5 0.7 0.8 0.9 1 1 1 15 0.5 0.8 0.9 0.9 1 1 1 18 0.6 0.8 0.9 1 1 1 1 21 0.7 0.9 1 1 1 1 1 24 0.9 1 1 1 1 1 1 ≥27 1 1 1 1 1 1 1 表 4 H+D=35 m时空间位置关系系数λ建议值
Table 4 Suggested values of coefficient of spatial position relationship when H+D=35 m
(单位: m) hj b 3 7 11 15 19 23 27 31 ≥35 3 0.5 0.6 0.6 0.7 0.8 0.8 0.8 0.9 1 6 0.4 0.5 0.6 0.7 0.8 0.8 0.9 1 1 9 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 12 0.4 0.6 0.7 0.8 0.9 0.9 1 1 1 15 0.5 0.6 0.8 0.9 0.9 1 1 1 1 18 0.5 0.7 0.9 0.9 1 1 1 1 1 21 0.6 0.8 0.9 1 1 1 1 1 1 24 0.7 0.9 1 1 1 1 1 1 1 27 0.8 0.9 1 1 1 1 1 1 1 30 0.9 1 1 1 1 1 1 1 1 ≥33 1 1 1 1 1 1 1 1 1 表 5 H+D=40 m时空间位置关系系数λ建议值
Table 5 Suggested values of coefficient of spatial position relationship when H+D=40 m
(单位: m) hj b 3 9 15 21 27 33 39 ≥45 3 0.8 0.9 0.7 0.7 0.8 0.9 0.9 1 6 0.9 0.6 0.7 0.7 0.8 0.9 1 1 9 0.4 0.6 0.7 0.8 0.8 0.9 1 1 12 0.4 0.6 0.7 0.8 0.9 1 1 1 15 0.4 0.6 0.7 0.9 1 1 1 1 18 0.5 0.7 0.8 0.9 1 1 1 1 21 0.5 0.7 0.9 1 1 1 1 1 24 0.6 0.8 0.9 1 1 1 1 1 27 0.7 0.9 1 1 1 1 1 1 30 0.8 0.9 1 1 1 1 1 1 33 0.9 1 1 1 1 1 1 1 ≥36 1 1 1 1 1 1 1 1 -
[1] ALI L, NAWAZ A, IQBAL S, et al. Dynamics of transit oriented development, role of greenhouse gases and urban environment: a study for management and policy[J]. Sustainability, 2021, 13(5): 2536. doi: 10.3390/su13052536
[2] HU W D, ZHU X N, ZENG Y Q, et al. Active earth pressure against flexible retaining wall for finite soils under the drum deformation mode[J]. Scientific Reports, 2022, 12(1): 497. doi: 10.1038/s41598-021-04411-4
[3] FAN C C, FANG Y S. Numerical solution of active earth pressures on rigid retaining walls built near rock faces[J]. Computers and Geotechnics, 2010, 37(7/8): 1023-1029.
[4] CHEN J J, LI M G, WANG J H. Active earth pressure against rigid retaining walls subjected to confined cohesionless soil[J]. International Journal of Geomechanics, 2017, 17(6): 06016041. doi: 10.1061/(ASCE)GM.1943-5622.0000855
[5] CHEN F Q, CHEN H B, XU L, et al. Seismic pseudo-static active earth pressure of narrow granular backfill against an inverted T-type retaining wall under translational mode[J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 107018. doi: 10.1016/j.soildyn.2021.107018
[6] 应宏伟, 黄东, 谢新宇. 考虑邻近地下室外墙侧压力影响的平动模式挡土墙主动土压力研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2970-2978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1050.htm YING Hongwei, HUANG Dong, XIE Xinyu. Study of active earth pressure on retaining wall subject to translation mode considering lateral pressure on adjacent existing basement exterior wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2970-2978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1050.htm
[7] CHEN F Q, LIN Y J, YANG J T, et al. Passive earth pressure of narrow cohesionless backfill against rigid retaining walls rotating about the base[J]. International Journal of Geomechanics, 2021, 21(1): 06020036. doi: 10.1061/(ASCE)GM.1943-5622.0001889
[8] HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318. doi: 10.1061/(ASCE)0733-9410(1985)111:3(302)
[9] LIU H, KONG D Z. Active earth pressure of finite width soil considering intermediate principal stress and soil arching effects[J]. International Journal of Geomechanics, 2022, 22(3): 04021294. doi: 10.1061/(ASCE)GM.1943-5622.0002298
[10] HU W D, ZHU X N, LIU X H, et al. Active earth pressure against cantilever retaining wall adjacent to existing basement exterior wall[J]. International Journal of Geomechanics, 2020, 20(11): 04020207. doi: 10.1061/(ASCE)GM.1943-5622.0001853
[11] 徐日庆, 徐叶斌, 程康, 等. 有限土体下考虑土拱效应的非极限主动土压力解[J]. 岩土工程学报, 2020, 42(2): 362-371. doi: 10.11779/CJGE202002018 XU Riqing, XU Yebin, CHENG Kang, et al. Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362-371. (in Chinese) doi: 10.11779/CJGE202002018
[12] LAI F W, YANG D Y, LIU S Y, et al. Towards an improved analytical framework to estimate active earth pressure in narrow c-φ soils behind rotating walls about the base[J]. Computers and Geotechnics, 2022, 141: 104544. doi: 10.1016/j.compgeo.2021.104544
[13] YANG D Y, LAI F W, LIU S Y. Earth pressure in narrow cohesive-fictional soils behind retaining walls rotated about the top: an analytical approach[J]. Computers and Geotechnics, 2022, 149: 104849. doi: 10.1016/j.compgeo.2022.104849
[14] FRYDMAN S, KEISSAR I. Earth pressure on retaining walls near rock faces[J]. Journal of Geotechnical Engineering, 1987, 113(6): 586-599. doi: 10.1061/(ASCE)0733-9410(1987)113:6(586)
[15] TAKE W A, VALSANGKAR A J. Earth pressures on unyielding retaining walls of narrow backfill width[J]. Canadian Geotechnical Journal, 2001, 38(6): 1220-1230. doi: 10.1139/t01-063
[16] XU L, CHEN H B, CHEN F Q, et al. An experimental study of the active failure mechanism of narrow backfills installed behind rigid retaining walls conducted using Geo-PIV[J]. Acta Geotechnica, 2022, 17(9): 4051-4068. doi: 10.1007/s11440-021-01438-9
[17] YANG M H, TANG X C. Rigid retaining walls with narrow cohesionless backfills under various wall movement modes[J]. International Journal of Geomechanics, 2017, 17(11): 04017098. doi: 10.1061/(ASCE)GM.1943-5622.0001007
[18] LEE Y J, BASSETT R H. Influence zones for 2D pile–soil-tunnelling interaction based on model test and numerical analysis[J]. Tunnelling and Underground Space Technology, 2007, 22(3): 325-342. doi: 10.1016/j.tust.2006.07.001
[19] JONGPRADIST P, KAEWSRI T, SAWATPARNICH A, et al. Development of tunneling influence zones for adjacent pile foundations by numerical analyses[J]. Tunnelling and Underground Space Technology, 2013, 34: 96-109. doi: 10.1016/j.tust.2012.11.005
[20] 张振波, 周佳迪, 孙明磊, 等. 近接增建基坑有限土体土压力计算方法探究[J]. 铁道科学与工程学报, 2023, 20(6): 2091-2102. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202306014.htm ZHANG Zhenbo, ZHOU Jiadi, SUN Minglei, et al. Finite soil pressure calculation method of excavation closing to existing underground structure[J]. Journal of Railway Science and Engineering, 2023, 20(6): 2091-2102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202306014.htm
-
期刊类型引用(5)
1. 陈祎,刘明昊,赵智慧. 钻孔灌注桩废弃泥浆快速絮凝脱水技术与机理研究. 建筑施工. 2025(01): 6-11 . 百度学术
2. 原媛,刘丝丝,崔勇涛,赖智龙,廖德祥. 生物酶用于河湖底泥脱水减量调理的对比研究. 水资源与水工程学报. 2025(01): 154-162 . 百度学术
3. 孙万吉,陈建,梁志学,李朝阳,赵永享. 碱渣-矿渣-水玻璃对流态固化土的影响研究. 中国新技术新产品. 2024(19): 116-118+140 . 百度学术
4. 唐伟超,赵东平,王风,朱龙,汤青山,和琦. 砂卵土-泥岩复合地层土压平衡盾构渣土脱水试验. 现代隧道技术. 2024(S1): 684-693 . 百度学术
5. 张达志. 基桩施工产生的废弃泥浆絮凝脱水后的土体工程性质研究. 四川水力发电. 2024(S2): 29-34 . 百度学术
其他类型引用(3)
-
其他相关附件