Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于多轴强度准则的混凝土面板应力安全评价方法研究

王芳, 李国英, 米占宽, 冯业林, 黄青富

王芳, 李国英, 米占宽, 冯业林, 黄青富. 基于多轴强度准则的混凝土面板应力安全评价方法研究[J]. 岩土工程学报, 2024, 46(7): 1378-1386. DOI: 10.11779/CJGE20230515
引用本文: 王芳, 李国英, 米占宽, 冯业林, 黄青富. 基于多轴强度准则的混凝土面板应力安全评价方法研究[J]. 岩土工程学报, 2024, 46(7): 1378-1386. DOI: 10.11779/CJGE20230515
WANG Fang, LI Guoying, MI Zhankuan, FENG Yelin, HUANG Qingfu. Evaluation method for safety of concrete slab stress based on multi-axial strength criterion[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1378-1386. DOI: 10.11779/CJGE20230515
Citation: WANG Fang, LI Guoying, MI Zhankuan, FENG Yelin, HUANG Qingfu. Evaluation method for safety of concrete slab stress based on multi-axial strength criterion[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1378-1386. DOI: 10.11779/CJGE20230515

基于多轴强度准则的混凝土面板应力安全评价方法研究  English Version

基金项目: 

国家自然科学基金项目 U1765203

国家自然科学基金项目 U21A20158

中央级公益性科研院所基本科研业务费项目 Y322003

中央级公益性科研院所基本科研业务费项目 Y320005

详细信息
    作者简介:

    王芳(1996—),女,博士研究生,主要从事土石坝数值计算与分析方面的研究工作。E-mail: wangfang@nhri.cn

    通讯作者:

    李国英, E-mail: gyli@nhri.cn

  • 中图分类号: TU432

Evaluation method for safety of concrete slab stress based on multi-axial strength criterion

  • 摘要: 混凝土面板作为面板堆石坝的关键防渗结构,其应力变形安全对保障工程安全运行至关重要。目前工程中普遍采用混凝土单轴标准强度评价面板应力安全,该方法忽略了面板应力状态对其强度的影响,会对面板破坏范围作出不合理的判断,因此,提出了基于多轴强度准则的混凝土面板应力安全评价方法,该方法通过确定混凝土强度调整系数及多轴强度应力水平指标评价面板应力安全。联合基于位移多点约束法的面板精细化计算方法及改进黏弹性方法全面考虑动位移和永久变形对面板动应力的影响,细致模拟地震过程中面板破坏发展过程。以强震区狭窄河谷上240 m级特高面板坝为例,对比分析了文中提出的多轴强度方法与当前单轴强度方法判断面板破坏范围的差异,结果表明:正常蓄水期,坝肩两侧面板位于“抗压强度削减区”、河床面板均位于“抗压强度增强区”,其中河床底部面板强度增加尤为明显,两种方法判断的面板受拉破坏区基本一致,但受压破坏区存在较大差异;遭遇地震情况下,多轴强度方法判断的面板受拉破坏区略小,而两种方法受压破坏区的位置和大小均存在显著差异。鉴于单轴强度方法无法考虑面板应力分布对其强度的影响,建议采用多轴强度准则指导特高面板坝混凝土面板设计和施工。
    Abstract: The concrete-faced rockfill dams (CFRDs) rely on the key impermeable structures, such as concrete slabs, for their safe operation. Ensuring the safety of the concrete slabs is of the utmost importance. The current evaluation method, which utilizes uniaxial strength, overlooks the influences of slab stress on their strength and may lead to unreasonable judgments regarding the damage zone. To address this issue, a method is proposed for evaluating the stress in the concrete slabs based on the multi-axial strength criterion. The safety of the slabs is assessed by determining the strength adjustment coefficient of concrete and the stress level index of multi-axial strength. A refined stress distribution analysis of the slabs is conducted using the cross-scale fine simulation method based on the multi-point constraint. The improved viscoelastic method is employed to comprehensively simulate the impact of dynamic and permanent deformations on the slab stress. This approach accurately depicts the progression of slab damage during an earthquake. To illustrate the effectiveness of the proposed multi-axial strength method, a 240 m-high concrete-faced rockfill dam located in a narrow valley within a seismic zone is taken as an example for comparison with the current uniaxial strength method. The results demonstrate that during the operational period, the material strength at both sides of the dam abutment is reduced, while it is enhanced on the riverbed, particularly at the bottom. Both methods yield similar conclusions regarding the tensile damage zones, but there are significant disparities in the compressive damage zones. During an earthquake, the multi-axial strength method indicates slightly smaller tensile damage zones, whereas the location and extent of the compressive damage zones differ significantly between the two methods. Considering the limitations of the uniaxial strength method in considering the influences of slab stress on their strength, it is suggested to adopt the multi-axial strength criterion as a guide for designing and constructing concrete slabs in extra-high CFRDs.
  • 图  1   多点约束法三维示例

    Figure  1.   3D example of multi-point constraint refinement

    图  2   三轴受力状态下的混凝土极限强度

    Figure  2.   Ultimate strengths of concrete under triaxial stress state

    图  3   基于多轴强度的混凝土面板应力安全评价流程

    Figure  3.   Flow chart of evaluation for saftey of concrete slab stress based on multi-axial strength criterion

    图  4   典型断面材料分区

    Figure  4.   Material zoning of the typical section

    图  5   面板坝三维有限元网格模型

    Figure  5.   3D FEM model

    图  6   网格局部加密细部示意图

    Figure  6.   Detailed view of mesh refinement

    图  7   基岩地震加速度时程曲线

    Figure  7.   Time histories of input acceleration

    图  8   运行20 a后面板破坏部位分布

    Figure  8.   Damage zones on concrete slabs after 20 years

    图  9   运行期面板抗压强度调整分布图

    Figure  9.   Compressive strength adjustment of slabs during operation period

    图  10   坝顶样本点位移时程曲线

    Figure  10.   Time histories of displacement of samples at the dam crest

    图  11   地震过程面板破坏面积占总面积的百分比

    Figure  11.   Percentages of damaged zone on concrete slab

    图  12   地震过程中面板破坏部位发展过程

    Figure  12.   Development of damage zone of concrete slabs at different time

    图  13   地震作用下面板破坏部位分布

    Figure  13.   Damage zones on concrete slab at the end of earthquake

    图  14   0.4H处面板样本单元的压应力水平变化时程曲线

    Figure  14.   Time histories of stress level of typical element at 0.4H

    图  15   0.9H处面板样本单元的应力水平变化时程曲线

    Figure  15.   Time histories of stress level of typical element at 0.9H

    表  1   混凝土试样的典型破坏形态划分[12]

    Table  1   Division of typical failure mode of concrete samples[12]

    破坏特征 拉断 柱状压断 片状劈裂 斜剪破坏 挤压流动
    主导应力 σ3 σ2 σ1σ2 σ1σ3 σ1σ3
    应力状态 拉/拉/拉 0σ1σ2σ3
    压/拉/拉 |σ3σ2||σ2σ1|0.1 |σ3σ2||σ2σ1|0.1
    压/压/拉 |σ3σ1|0.1 |σ3σ1|0.1
    压/压/压 σ3σ1σ2σ10.15 σ3σ10.15σ2σ10.15 σ3σ1=0.150.2σ2σ10.15 σ3σ1σ2σ10.15
    下载: 导出CSV

    表  2   筑坝料“南水”模型参数

    Table  2   Parameters of "NHRI" model

    分区 ρ/(g·cm-3) φо/(°) Δφ/(°) K n Rf cd/% nd Rd
    垫层区 2.324 54.2 10.3 1515 0.33 0.80 0.002 0.540 0.707
    过渡区 2.296 55.0 11.1 1186 0.32 0.80 0.004 0.654 0.697
    主堆区 2.268 54.1 11.1 1519 0.29 0.83 0.004 0.594 0.735
    增模区 2.296 54.4 11.1 1750 0.29 0.83 0.003 0.613 0.723
    次堆区 2.260 57.3 13.5 1494 0.32 0.81 0.005 0.533 0.703
    排水堆石区 2.240 57.3 13.5 1296 0.32 0.81 0.005 0.533 0.703
    压坡区 2.010 44.5 6.8 450 0.35 0.63 0.008 0.578 0.583
    下载: 导出CSV

    表  3   筑坝料流变模型参数

    Table  3   Parameters of creep model

    分区 α b/% c/% d/% m1 m2 m3
    除排水堆石区外 0.002 0.0806 0.019 0.1272 0.425 0.541 0.801
    排水堆石区 0.002 0.1014 0.046 0.1480 0.462 0.567 0.893
    下载: 导出CSV

    表  4   筑坝料沈珠江动力模型参数

    Table  4   Parameters of Shen's dynamic model

    分区 k2 n k1 λmax c1/% c2 c4/% c5
    垫层区 3618 0.45 40.0 0.17 0.64 0.97 6.33 0.69
    过渡区 4007 0.42 55.5 0.24 0.61 1.26 6.12 0.88
    主堆区 4589 0.49 62.7 0.23 0.56 1.23 5.80 0.79
    增模区 4718 0.49 62.7 0.23 0.60 1.23 5.92 0.79
    次堆区 4030 0.56 54.1 0.24 0.58 1.26 5.89 0.88
    排水堆石区 3917 0.55 54.1 0.24 0.60 1.26 5.90 0.88
    压坡区 500 0.35 20.0 0.28 0.62 1.23 6.17 0.80
    下载: 导出CSV
  • [1] 湛正刚, 张合作, 程瑞林, 等. 高面板坝全寿命周期变形控制方法及应用[J]. 岩土工程学报, 2022, 44(6): 1141-1147. doi: 10.11779/CJGE202206019

    ZHAN Zhenggang, ZHANG Hezuo, CHENG Ruilin, et al. Application of methods for life-cycle deformation control of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1141-1147. (in Chinese) doi: 10.11779/CJGE202206019

    [2] 徐泽平, 陆希, 翟迎春, 等. 狭窄河谷中混凝土面板坝的应力变形规律及工程措施研究[J]. 水利学报, 2022, 53(12): 1397-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202212001.htm

    XU Zeping, LU Xi, ZHAI Yingchun, et al. Study on stress and deformation and engineering measures for concrete faced rockfill dam built in narrow valley[J]. Journal of Hydraulic Engineering, 2022, 53(12): 1397-1409. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202212001.htm

    [3] 徐泽平. 混凝土面板堆石坝关键技术与研究进展[J]. 水利学报, 2019, 50(1): 62-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901008.htm

    XU Zeping. Research progresses and key technologies of CFRD construction[J]. Journal of Hydraulic Engineering, 2019, 50(1): 62-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901008.htm

    [4] 邹德高, 孔宪京, 刘京茂, 等. 高土石坝极限抗震能力评价量化指标研究[J]. 中国科学(技术科学), 2022, 52(12): 1831-1838. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202212005.htm

    ZOU Degao, KONG Xianjing, LIU Jingmao, et al. Criteria for ultimate aseismic capacity of high rockfill dam[J]. Scientia Sinica (Technologica), 2022, 52(12): 1831-1838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202212005.htm

    [5] 陈生水, 李国英, 傅中志. 高土石坝地震安全控制标准与极限抗震能力研究[J]. 岩土工程学报, 2013, 35(1): 59-65. http://cge.nhri.cn/cn/article/id/14913

    CHEN Shengshui, LI Guoying, FU Zhongzhi. Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 59-65. (in Chinese) http://cge.nhri.cn/cn/article/id/14913

    [6] 混凝土面板堆石坝设计规范: NB/T 10871—2021[S]. 北京: 中国水利水电出版社, 2021.

    Code for Design of Concrete Face Rockfill Dams: NB/T 10871—2021[S]. Beijing: China Water & Power Press, 2021. (in Chinese)

    [7] 水工混凝土结构设计规范: NB/T 11011—2022[S]. 北京: 中国水利水电出版社, 2022.

    Code for Design of Hydraulic Concrete Structures: NB/T 11011—2022[S]. Beijing: China Water & Power Press, 2022. (in Chinese)

    [8] 党发宁, 陈晶晶, 高天晴, 等. 地震输入角度对抽水蓄能高面板堆石坝动反应影响研究[J]. 中国水利水电科学研究院学报, 2022, 20(5): 402-410, 421. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202205003.htm

    DANG Faning, CHEN Jingjing, GAO Tianqing, et al. Study on the influence of seismic wave input angle on dynamic response of high face slab pumped storage dam[J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20(5): 402-410, 421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202205003.htm

    [9] 魏匡民, 陈生水, 李国英, 等. 位移多点约束法在面板堆石坝精细模拟中的应用研究[J]. 岩土工程学报, 2020, 42(4): 616-623. doi: 10.11779/CJGE202004003

    WEI Kuangmin, CHEN Shengshui, LI Guoying, et al. Application of displacement multi-point constraint refinement method in simulation of concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 616-623. (in Chinese) doi: 10.11779/CJGE202004003

    [10] 魏匡民, 陈生水, 马洪玉, 等. 黏弹性方法用于面板堆石坝动力分析时必要的改进[J]. 岩土力学, 2021, 42(12): 3475-3484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112026.htm

    WEI Kuangmin, CHEN Shengshui, MA Hongyu, et al. A necessary improvement of the viscoelastic method for calculating the dynamic behaviors of the concrete faced rockfill dams[J]. Rock and Soil Mechanics, 2021, 42(12): 3475-3484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112026.htm

    [11] 沈珠江, 徐刚. 堆石料的动力变形特性[J]. 水利水运工程学报, 1996(2): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201804003.htm

    SHEN Zhujiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Hydro-Science and Engineering, 1996(2): 143-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201804003.htm

    [12] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199103000.htm

    GUO Zhenhai, WANG Chuanzhi. Investigation of strength and failure criterion of concrete under multi-axial stresses[J]. China Civil Engineering Journal, 1991, 24(3): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199103000.htm

    [13] 王传志, 过镇海, 张秀琴. 二轴和三轴受压混凝土的强度试验[J]. 土木工程学报, 1987, 20(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198701001.htm

    WANG Chuanzhi, GUO Zhenhai, ZHANG Xiuqin. Strength tests for biaxial and triaxial compression concrete[J]. Chinese Journal of Civil Engineering, 1987, 20(1): 15-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198701001.htm

    [14] 杨健辉. 侧压下混凝土静态受拉与受拉疲劳性能研究[D]. 大连: 大连理工大学, 2003.

    YANG Jianhui. Research on Static Tensile and Tensile Fatigue Properties of Concrete under Lateral Compression[D]. Dalian: Dalian University of Technology, 2003. (in Chinese)

    [15] 沈珠江. 计算土力学[M]. 上海: 上海科学技术出版社, 1990.

    SHEN Zhujiang. Computational Soil Mechanics[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1990. (in Chinese)

    [16] 李国英, 赵魁芝, 米占宽. 堆石体流变对混凝土面板坝应力变形特性的影响[J]. 岩土力学, 2005, 26(增刊1): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S1027.htm

    LI Guoying, ZHAO Kuizhi, MI Zhankuan. Influence of rheological behaviors of rockfills on stress-strain behaviors in concrete faced rockfill dam[J]. Rock and Soil Mechanics, 2005, 26(S1): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S1027.htm

    [17] 魏匡民, 陈生水, 李国英, 等. 地震动波动输入方法在高土石坝动力分析中的应用研究[J]. 三峡大学学报(自然科学版), 2019, 41(1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201901006.htm

    WEI Kuangmin, CHEN Shengshui, LI Guoying, et al. Application of earthquake wave motion input method to high earth-rock dam dynamic analysis[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(1): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201901006.htm

    [18]

    XU B, ZOU D G, KONG X J, et al. Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model[J]. Computers and Geotechnics, 2015, 65: 258-265.

  • 期刊类型引用(0)

    其他类型引用(1)

图(15)  /  表(4)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  60
  • PDF下载量:  55
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-06-06
  • 网络出版日期:  2023-11-21
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回