• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

露天潜孔钻机随钻测量系统研发与应用研究

侯仕军, 丁伟捷, 田帅康, 梁书锋, 刘殿书, 郭大超

侯仕军, 丁伟捷, 田帅康, 梁书锋, 刘殿书, 郭大超. 露天潜孔钻机随钻测量系统研发与应用研究[J]. 岩土工程学报, 2024, 46(7): 1509-1515. DOI: 10.11779/CJGE20230477
引用本文: 侯仕军, 丁伟捷, 田帅康, 梁书锋, 刘殿书, 郭大超. 露天潜孔钻机随钻测量系统研发与应用研究[J]. 岩土工程学报, 2024, 46(7): 1509-1515. DOI: 10.11779/CJGE20230477
HOU Shijun, DING Weijie, TIAN Shuaikang, LIANG Shufeng, LIU Dianshu, GUO Dachao. Development and application of MWD system for DTH drilling rig[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1509-1515. DOI: 10.11779/CJGE20230477
Citation: HOU Shijun, DING Weijie, TIAN Shuaikang, LIANG Shufeng, LIU Dianshu, GUO Dachao. Development and application of MWD system for DTH drilling rig[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1509-1515. DOI: 10.11779/CJGE20230477

露天潜孔钻机随钻测量系统研发与应用研究  English Version

详细信息
    作者简介:

    侯仕军(1995—),男,博士研究生,主要从事岩石破碎和工程爆破方面的研究。E-mail: hsj131723@163.com

    通讯作者:

    梁书锋, E-mail: 201638@cumtb.edu.cn

  • 中图分类号: TU43;TD164

Development and application of MWD system for DTH drilling rig

  • 摘要: 露天采矿随钻测量技术研究目前尚处于初期阶段,研发随钻参数测量系统是实现随钻测量技术服务于采矿工程行业的首要任务。基于TAIYE-390-Ⅱ潜孔钻机工作原理,确定了随钻参数,提出了一套通用的测量方法,并研发了测量装置。装置主要由数据采集系统、数据转换系统和数据处理系统组成,可实现对钻进时间、钻进深度、钻进速度、钻杆轴压、回转力矩、回转速度、冲击风压和冲击风量等参数的实时准确测量、采集、计算、存储、显示和远程传输。结合某石灰岩矿钻孔数据,提出了一种反映岩性变化的数据整合方法,并借助钻孔成像试验分析了随钻测量技术在岩体结构面识别中的可行性。结果表明钻进速度和回转力矩对岩体结构响应最为灵敏,冲击风量和冲击风压在钻凿含孔洞的破碎岩体时表现突出,而钻杆轴压和回转速度在岩体结构识别中作用较小。研究成果在潜孔钻机随钻测量系统研发和随钻岩性识别等方面具有重要的理论意义和应用价值。
    Abstract: The researches on the measurement while drilling (MWD) technology in the field of open-pit mining are still in the early stage, and the development of MWD systems is the primary task to realize the application of MWD technology in the mining engineering industry. Based on the working principles of the TAIYE-390-Ⅱ hydraulic DTH drilling rig, the MWD parameters and a universal measurement method are respectively determined, and the corresponding measurement devices are developed. The devices mainly include a data acquisition system, a data conversion system, and a data processing system, which can realize the real-time and accurate measurement, acquisition, calculation, storage, display and remote transmission of parameters such as drilling time, depth, penetration rate, axial force, rotation torque, rotation speed, percussive air pressure and air quantity. With the MWD data from a limestone mine, a data integration method that can reflect lithological variations is proposed, and the feasibility of MWD in the structural identification of rock mass is analyzed through the borehole imaging experiments. The results indicate that the penetration rate and rotation torque exhibit the highest sensitivity to rock mass structures. The air quantity and air pressure are more sensitive only when drilling fragmented rock masses with cavities, while the axial force and rotation speed have limited influences on the structural identification of rock mass. The research findings are of important theoretical significance and practical value in the development of MWD systems for DTH drilling rigs and lithological identification.
  • 图  1   潜孔钻机随钻测量系统组成

    Figure  1.   Installation position of sensors of TAIYE-390-Ⅱ MWD system

    图  2   潜孔钻机随钻参数测量系统原理

    Figure  2.   Principles of MWD system based on TAIYE-390-Ⅱ DTH drilling rig

    图  3   随钻测量系统数据采集逻辑框图

    Figure  3.   Logical flowchart of data acquisition for MWD system

    图  4   原始的深度序列随钻测量数据

    Figure  4.   Raw MWD data of depth series

    图  5   整合后的深度序列随钻测量数据及炮孔成像图

    Figure  5.   Integrated MWD data of depth series and borehole imaging

    图  6   钻孔成像现场试验

    Figure  6.   Borehole imaging tests

    图  7   整合后的深度序列随钻测量数据及孔洞岩体炮孔成像图

    Figure  7.   Integrated MWD data of depth series and borehole imaging of cavity rock mass

    表  1   TAIYE-390-Ⅱ潜孔钻机参数表

    Table  1   Working parameters of TAIYE-390-Ⅱ DTH drilling rig

    参数 参考值 参数 参考值
    钻孔直径/mm 115~203 液压泵工作压力/MPa 35
    钻进深度/m 21 推进/提升力/N 18000
    钻杆数量/根 7 回转力矩/(N·m) 3300
    单次推进/m 3 回转速度/RPM 120
    滑架行程/mm 4115 工作风压/MPa 1.05~2.46
    下载: 导出CSV

    表  2   随钻参数定义

    Table  2   Definition of MWD parameters

    名称 定义
    钻进深度 沿钻孔方向钻头底部离地表的轴向长度
    钻进速度 钻头钻进岩体的速度
    钻杆轴压 施加于钻头上的轴压力
    回转力矩 钻头转动所需要的的扭矩
    回转速度 钻头每分钟转动的圈数
    冲击风压 作用于冲击器上的风的压力
    冲击风量 作用于冲击器上的风的流量
    下载: 导出CSV
  • [1] 刘红岐, 张元中. 随钻测井原理与应用[M]. 北京: 石油工业出版社, 2018.

    LIU Hongqi, ZHANG Yuanzhong. Principle and Application of Logging While Drilling[M]. Beijing: Petroleum Industry Press, 2018. (in Chinese)

    [2] 侯仕军, 丁伟捷, 田帅康, 等. 随钻测量技术在非油气工程领域的应用现状与展望[J]. 矿业研究与开发, 2022, 42(12): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202212009.htm

    HOU Shijun, DING Weijie, TIAN Shuaikang, et al. Application status and prospects of MWD technology in non-oil and gas engineering field[J]. Mining Research and Development, 2022, 42(12): 41-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202212009.htm

    [3]

    KHORZOUGHI B M, HALL R, APEL D. Rock fracture density characterization using measurement while drilling (MWD) techniques[J]. International Journal of Mining Science and Technology, 2018, 28(6): 859-864. doi: 10.1016/j.ijmst.2018.01.001

    [4]

    MANZOOR S, LIAGHAT S, GUSTAFSON A, et al. Establishing relationships between structural data from close-range terrestrial digital photogrammetry and measurement while drilling data[J]. Engineering Geology, 2020, 267: 105480. doi: 10.1016/j.enggeo.2020.105480

    [5]

    KOSOLAPOV A I. Modern methods and tools for determining drillability and blastability of rocks[J]. IOP Conference Series: Earth and Environmental Science, 2020, 459(2): 022097. doi: 10.1088/1755-1315/459/2/022097

    [6] 韩新平, 邹伟, 侯成恒. 基于BP神经网络的回转切削钻机凿岩速度预测[J]. 应用泛函分析学报, 2015, 17(1): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YYFH201501013.htm

    HAN Xinping, ZOU Wei, HOU Chengheng. Prediction on drilling speed of rotary drilling rigs based on BP neural network[J]. Acta Analysis Functionalis Applicata, 2015, 17(1): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYFH201501013.htm

    [7] 邹伟. 基于潜孔钻机钻进参数的岩石硬度预测方法研究[D]. 阜新: 辽宁工程技术大学, 2015.

    ZOU Wei. Study on Drediction Method of Rock Hardness Based on Drilling Parameters of DTH Drilling Rig[D]. Fuxin: Liaoning Technical University, 2015. (in Chinese)

    [8] 岳中琦. 钻孔过程监测(DPM)对工程岩体质量评价方法的完善与提升[J]. 岩石力学与工程学报, 2014, 33(10): 1977-1996. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm

    YUE Zhongqi. Drilling process monitoring for refining and upgrading rock mass quality classification methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1977-1996. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm

    [9] 李宁, 李骞, 宋玲. 基于回转切削的岩石力学参数获取新思路[J]. 岩石力学与工程学报, 2015, 34(2): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502013.htm

    LI Ning, LI Qian, SONG Ling. Acquiring mechanical parameters of rock based on rotational cutting[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 323-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502013.htm

    [10] 王琦, 高红科, 蒋振华, 等. 地下工程围岩数字钻探测试系统研发与应用[J]. 岩石力学与工程学报, 2020, 39(2): 301-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002010.htm

    WANG Qi, GAO Hongke, JIANG Zhenhua, et al. Development and application of a surrounding rock digital drilling test system of underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 301-310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002010.htm

    [11]

    LAKSHMINARAYANA C R, TRIPATHI A K, PAL S K. Experimental investigation on potential use of drilling parameters to quantify rock strength[J]. International Journal of Geo-Engineering, 2021, 12(1): 23. doi: 10.1186/s40703-021-00152-5

    [12]

    RAJESH KUMAR B, VARDHAN H, GOVINDARAJ M. Prediction of uniaxial compressive strength, tensile strength and porosity of sedimentary rocks using sound level produced during rotary drilling[J]. Rock Mechanics and Rock Engineering, 2011, 44(5): 613-620.

    [13]

    KALANTARI S, BAGHBANAN A, HASHEMALHOSSEINI H. An analytical model for estimating rock strength parameters from small-scale drilling data[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 135-145.

    [14] 郭勇, 周振华. 潜孔钻机的应用现状与发展趋势[J]. 矿业快报, 2008(4): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200804006.htm

    GUO Yong, ZHOU Zhenhua. Application actualities and development trend of down-the-hole drill[J]. Express Information of Mining Industry, 2008(4): 13-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200804006.htm

    [15] 徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.

    XU Xiaohe, YU Jing. Rock Fragmentation[M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese)

    [16] 赵宏强, 李美香, 高斌, 等. 潜孔钻机凿岩过程自动防卡钻理论与方案研究[J]. 机械科学与技术, 2008, 27(6): 739-743. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200806011.htm

    ZHAO Hongqiang, LI Meixiang, GAO Bin, et al. On automatic anti-jamming control in the rock drilling process for a down the hole drill[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(6): 739-743. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200806011.htm

图(7)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26
  • 网络出版日期:  2024-07-11
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回