Development and application of MWD system for DTH drilling rig
-
摘要: 露天采矿随钻测量技术研究目前尚处于初期阶段,研发随钻参数测量系统是实现随钻测量技术服务于采矿工程行业的首要任务。基于TAIYE-390-Ⅱ潜孔钻机工作原理,确定了随钻参数,提出了一套通用的测量方法,并研发了测量装置。装置主要由数据采集系统、数据转换系统和数据处理系统组成,可实现对钻进时间、钻进深度、钻进速度、钻杆轴压、回转力矩、回转速度、冲击风压和冲击风量等参数的实时准确测量、采集、计算、存储、显示和远程传输。结合某石灰岩矿钻孔数据,提出了一种反映岩性变化的数据整合方法,并借助钻孔成像试验分析了随钻测量技术在岩体结构面识别中的可行性。结果表明钻进速度和回转力矩对岩体结构响应最为灵敏,冲击风量和冲击风压在钻凿含孔洞的破碎岩体时表现突出,而钻杆轴压和回转速度在岩体结构识别中作用较小。研究成果在潜孔钻机随钻测量系统研发和随钻岩性识别等方面具有重要的理论意义和应用价值。Abstract: The researches on the measurement while drilling (MWD) technology in the field of open-pit mining are still in the early stage, and the development of MWD systems is the primary task to realize the application of MWD technology in the mining engineering industry. Based on the working principles of the TAIYE-390-Ⅱ hydraulic DTH drilling rig, the MWD parameters and a universal measurement method are respectively determined, and the corresponding measurement devices are developed. The devices mainly include a data acquisition system, a data conversion system, and a data processing system, which can realize the real-time and accurate measurement, acquisition, calculation, storage, display and remote transmission of parameters such as drilling time, depth, penetration rate, axial force, rotation torque, rotation speed, percussive air pressure and air quantity. With the MWD data from a limestone mine, a data integration method that can reflect lithological variations is proposed, and the feasibility of MWD in the structural identification of rock mass is analyzed through the borehole imaging experiments. The results indicate that the penetration rate and rotation torque exhibit the highest sensitivity to rock mass structures. The air quantity and air pressure are more sensitive only when drilling fragmented rock masses with cavities, while the axial force and rotation speed have limited influences on the structural identification of rock mass. The research findings are of important theoretical significance and practical value in the development of MWD systems for DTH drilling rigs and lithological identification.
-
-
表 1 TAIYE-390-Ⅱ潜孔钻机参数表
Table 1 Working parameters of TAIYE-390-Ⅱ DTH drilling rig
参数 参考值 参数 参考值 钻孔直径/mm 115~203 液压泵工作压力/MPa 35 钻进深度/m 21 推进/提升力/N 18000 钻杆数量/根 7 回转力矩/(N·m) 3300 单次推进/m 3 回转速度/RPM 120 滑架行程/mm 4115 工作风压/MPa 1.05~2.46 表 2 随钻参数定义
Table 2 Definition of MWD parameters
名称 定义 钻进深度 沿钻孔方向钻头底部离地表的轴向长度 钻进速度 钻头钻进岩体的速度 钻杆轴压 施加于钻头上的轴压力 回转力矩 钻头转动所需要的的扭矩 回转速度 钻头每分钟转动的圈数 冲击风压 作用于冲击器上的风的压力 冲击风量 作用于冲击器上的风的流量 -
[1] 刘红岐, 张元中. 随钻测井原理与应用[M]. 北京: 石油工业出版社, 2018. LIU Hongqi, ZHANG Yuanzhong. Principle and Application of Logging While Drilling[M]. Beijing: Petroleum Industry Press, 2018. (in Chinese)
[2] 侯仕军, 丁伟捷, 田帅康, 等. 随钻测量技术在非油气工程领域的应用现状与展望[J]. 矿业研究与开发, 2022, 42(12): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202212009.htm HOU Shijun, DING Weijie, TIAN Shuaikang, et al. Application status and prospects of MWD technology in non-oil and gas engineering field[J]. Mining Research and Development, 2022, 42(12): 41-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202212009.htm
[3] KHORZOUGHI B M, HALL R, APEL D. Rock fracture density characterization using measurement while drilling (MWD) techniques[J]. International Journal of Mining Science and Technology, 2018, 28(6): 859-864. doi: 10.1016/j.ijmst.2018.01.001
[4] MANZOOR S, LIAGHAT S, GUSTAFSON A, et al. Establishing relationships between structural data from close-range terrestrial digital photogrammetry and measurement while drilling data[J]. Engineering Geology, 2020, 267: 105480. doi: 10.1016/j.enggeo.2020.105480
[5] KOSOLAPOV A I. Modern methods and tools for determining drillability and blastability of rocks[J]. IOP Conference Series: Earth and Environmental Science, 2020, 459(2): 022097. doi: 10.1088/1755-1315/459/2/022097
[6] 韩新平, 邹伟, 侯成恒. 基于BP神经网络的回转切削钻机凿岩速度预测[J]. 应用泛函分析学报, 2015, 17(1): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YYFH201501013.htm HAN Xinping, ZOU Wei, HOU Chengheng. Prediction on drilling speed of rotary drilling rigs based on BP neural network[J]. Acta Analysis Functionalis Applicata, 2015, 17(1): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYFH201501013.htm
[7] 邹伟. 基于潜孔钻机钻进参数的岩石硬度预测方法研究[D]. 阜新: 辽宁工程技术大学, 2015. ZOU Wei. Study on Drediction Method of Rock Hardness Based on Drilling Parameters of DTH Drilling Rig[D]. Fuxin: Liaoning Technical University, 2015. (in Chinese)
[8] 岳中琦. 钻孔过程监测(DPM)对工程岩体质量评价方法的完善与提升[J]. 岩石力学与工程学报, 2014, 33(10): 1977-1996. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm YUE Zhongqi. Drilling process monitoring for refining and upgrading rock mass quality classification methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1977-1996. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm
[9] 李宁, 李骞, 宋玲. 基于回转切削的岩石力学参数获取新思路[J]. 岩石力学与工程学报, 2015, 34(2): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502013.htm LI Ning, LI Qian, SONG Ling. Acquiring mechanical parameters of rock based on rotational cutting[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 323-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502013.htm
[10] 王琦, 高红科, 蒋振华, 等. 地下工程围岩数字钻探测试系统研发与应用[J]. 岩石力学与工程学报, 2020, 39(2): 301-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002010.htm WANG Qi, GAO Hongke, JIANG Zhenhua, et al. Development and application of a surrounding rock digital drilling test system of underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 301-310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002010.htm
[11] LAKSHMINARAYANA C R, TRIPATHI A K, PAL S K. Experimental investigation on potential use of drilling parameters to quantify rock strength[J]. International Journal of Geo-Engineering, 2021, 12(1): 23. doi: 10.1186/s40703-021-00152-5
[12] RAJESH KUMAR B, VARDHAN H, GOVINDARAJ M. Prediction of uniaxial compressive strength, tensile strength and porosity of sedimentary rocks using sound level produced during rotary drilling[J]. Rock Mechanics and Rock Engineering, 2011, 44(5): 613-620.
[13] KALANTARI S, BAGHBANAN A, HASHEMALHOSSEINI H. An analytical model for estimating rock strength parameters from small-scale drilling data[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 135-145.
[14] 郭勇, 周振华. 潜孔钻机的应用现状与发展趋势[J]. 矿业快报, 2008(4): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200804006.htm GUO Yong, ZHOU Zhenhua. Application actualities and development trend of down-the-hole drill[J]. Express Information of Mining Industry, 2008(4): 13-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200804006.htm
[15] 徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984. XU Xiaohe, YU Jing. Rock Fragmentation[M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese)
[16] 赵宏强, 李美香, 高斌, 等. 潜孔钻机凿岩过程自动防卡钻理论与方案研究[J]. 机械科学与技术, 2008, 27(6): 739-743. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200806011.htm ZHAO Hongqiang, LI Meixiang, GAO Bin, et al. On automatic anti-jamming control in the rock drilling process for a down the hole drill[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(6): 739-743. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200806011.htm