Instability failure modes and construction mechanics of large-section multi-arch tunnels in fly ash deposits
-
摘要: 国内目前并无在粉煤灰堆积体中采用暗挖法修建大断面连拱隧道的先例,给隧道的设计和施工带来了巨大挑战。依托盐坪坝隧道工程,开展了室内相似模型试验,探讨了该地层下大断面连拱隧道塌落拱演化规律及开挖施工力学行为。研究结果表明:连拱隧道在粉煤灰堆积体中开挖极易发生失稳,将失稳过程划分为4个演化阶段,破坏模式具有突发性、剧烈性、对称性、同步性特征;塌落拱高度约为隧道开挖跨度的40%。采用单侧壁导坑法开挖时粉煤灰堆积体承载力严重不足,根据相似换算关系左、右洞拱顶沉降分别为16.86,14.91 cm,需对地层实施注浆加固;地层沉降呈对称“双峰状”,先行洞相较于后行洞受开挖影响较大,中隔墙的承载作用能够有效降低地层位移,单洞压力拱向双洞压力拱转换过程中,中隔墙受到偏压作用容易向先行洞侧偏转,建议在先行洞开挖时中隔墙添加支撑物。Abstract: At present, there is no precedent of using the undermining method to construct large-section multi-arch tunnels in fly ash deposits in China, which brings great challenges to the design and construction of the tunnels. Based on the Yanpingba tunnel project, the laboratory similar model tests are carried out to explore the evolution laws of collapse arch and mechanical behaviors of excavation of the double-arch tunnel in fly ash stratum. The results show that the excavation of the multi-arch arch tunnels in the fly ash deposits is highly susceptible to instability, and the failure process is characterized by suddenness, intensity, symmetry and synchronicity. The height of the collapsed arch is about 0.4 times the excavation span of the tunnels. The bearing capacity of the fly ash deposits is seriously insufficient by using the single-side drift method, and the settlements of the left and right vaults are 16.86 cm and 14.91 cm according to the similarity relationship. It is necessary to implement grouting reinforcement for the stratum. The bearing effect of the partition wall can effectively reduce the displacement of the stratum, the shape of stratum settlement is 'bimodal', and the first-excavated tunnel is more affected by excavation than the following one. During the process of conversion from single-tunnel pressure arch to double-tunnel one, the partition wall is easily deflected to the side of the first-excavated tunnel under the action of bias pressure, so it is suggested to add supports to the partition wall in the first-excavated of the existing tunnel.
-
Keywords:
- multi-arch tunnel /
- fly ash deposit /
- model test /
- collapse arch /
- single-side drift method
-
-
表 1 粉煤灰物理性质参数
Table 1 Physical properties and parameters of fly ash
天然重度/() 含水率/% 孔隙比 塑性指数 液性指数 13.6~14.9 20.9~92.6 1.58~2.52 13.0~32.9 0.14~2.38 表 2 原型土及模型材料参数
Table 2 Material parameters of prototype soil and model soil
力学
参数重度
γ/(kN·m-3)弹性模量
E/MPa泊松比
μ内聚力
c/kPa内摩擦角φ/
(°)原型 14.9 10 0.35~0.45 20~32 21~25 模型 13.8 0.47 0.38 1.09 19.7 表 3 相似材料配比Table 3 Similar material ratios
单位:% 材料成分 粉煤灰 河砂 机油 占比 53 39 8 表 4 初支、中隔墙相似材料参数
Table 4 Material parameters of initial support and partition wall
材料 抗压强度/MPa 抗拉强度/MPa 弹性
模量/GPa泊松比 重度/
(kN·m-3)C25混凝土 16.7 1.78 29.5 0.2 25 相似材料 0.557 0.059 0.983 0.2 25 表 5 钢架相似材料参数
Table 5 Material parameters of steel frame
型号 弹性模量/GPa 惯性矩/cm4 间距/cm I22b钢拱架 原型 210 3570 50 模型 210 1.41×10-4 1.56 -
[1] 陈湘生, 徐志豪, 包小华, 等. 中国隧道建设面临的若干挑战与技术突破[J]. 中国公路学报, 2020, 33(12): 1-14. doi: 10.3969/j.issn.1001-7372.2020.12.001 CHEN Xiangsheng, XU Zhihao, BAO Xiaohua, et al. Challenges and technological breakthroughs in tunnel construction in China[J]. China Journal of Highway and Transport, 2020, 33(12): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.001
[2] 李志厚, 朱合华, 丁文其. 公路连拱隧道设计与施工关键技术[M]. 北京: 人民交通出版社, 2010. LI Zhihou, ZHU Hehua, DING Wenqi. Key Technology of Design and Construction for Highway Twin-Tunnel[M]. Beijing: China Communications Press, 2010. (in Chinese)
[3] FRALDI M, GUARRACINO F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(4): 665-673.
[4] FRALDI M, GUARRACINO F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections- Science Direct[J]. International Journal of Solids and Structures, 2009, 47(2): 216-223.
[5] 朱合华, 黄锋, 徐前卫. 变埋深下软弱破碎隧道围岩渐进性破坏试验与数值模拟[J]. 岩石力学与工程学报, 2010, 29(6): 1113-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006006.htm ZHU Hehua, HUANG Feng, XU Qianwei. Model test and numerical simulation for progressive failure of weak and fractured tunnel surrounding rock under different overburden depths[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1113-1122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006006.htm
[6] 房倩, 张顶立, 王毅远, 等. 圆形洞室围岩破坏模式模型试验研究[J]. 岩石力学与工程学报, 2011, 30(3): 564-571. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103016.htm FANG Qian, ZHANG Dingli, WANG Yiyuan, et al. Model test study of failure modes of surrounding rock for circular Caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 564-571. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103016.htm
[7] 李英杰, 张顶立, 宋义敏, 等. 软弱破碎深埋隧道围岩渐进性破坏试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1138-1147. doi: 10.3969/j.issn.1000-6915.2012.06.007 LI Yingjie, ZHANG Dingli, SONG Yimin, et al. Experimental research of progressive damage of surrounding rock for soft fractured deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1138-1147. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.06.007
[8] 郑康成, 丁文其, 金威, 等. 特大断面隧道分步施工动态压力拱分析研究[J]. 岩土工程学报, 2015, 37 (增刊1): 72-77. doi: 10.11779/CJGE2015S1015 ZHENG Kangcheng, DING Wenqi, JIN Wei, et al. Experimental and numerical study on staged construction pressure arch of super large section tunnel[J]. China Journal of Geotechnical Engineering, 2015, 37(S1): 72-77. (in Chinese) doi: 10.11779/CJGE2015S1015
[9] 宫全美, 张润来, 周顺华, 等. 基于颗粒椭球体理论的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1): 99-105. doi: 10.11779/CJGE201701008 GONG Quanmei, ZHANG Runlai, ZHOU Shunhua, et al. Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 99-105. (in Chinese) doi: 10.11779/CJGE201701008
[10] NOMIKOS P P, SOFIANOS A I, TSOUTRELIS C E. Symmetric wedge in the roof of a tunnel excavated in an inclined stress field[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(1): 59-67. doi: 10.1016/S1365-1609(02)00013-8
[11] SUBRIN D, WONG H. Tunnel face stability in frictional material: a new 3D failure mechanism[J]. Comptes Rendus Mecanique, 2002, 330(7): 513-519. doi: 10.1016/S1631-0721(02)01491-2
[12] 李鸿博, 郭小红. 公路连拱隧道土压力荷载的计算方法研究[J]. 岩土力学, 2009, 30(11): 3429-3434. doi: 10.3969/j.issn.1000-7598.2009.11.035 LI Hongbo, GUO Xiaohong. Research on calculation metheods of earth pressure on Muti-arch tunnel for highway[J]. Rock and Soil Mechanics, 2009, 30(11): 3429-3434. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.035
[13] 丁文其, 王晓形, 朱合华, 等. 连拱隧道设计荷载的确定方法[J]. 中国公路学报, 2007, 20(5): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200705015.htm DING Wenqi, WANG Xiaoxing, ZHU Hehua, et al. Defining method for designing load of multi-arch tunnel[J]. China Journal of Highway and Transport, 2007, 20(5): 78-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200705015.htm
[14] LI C L, WANG S R, ZOU Z S, et al. Evolution characteristic analysis of pressure-arch of a double-arch tunnel in water-rich strata[J]. Journal of Engineering Science and Technology Review, 2016, 9(1): 44-51. doi: 10.25103/jestr.091.07
[15] 昝文博, 赖金星, 邱军领, 等. 松散堆积体隧道压力拱效应试验与数值模拟[J]. 岩土工程学报, 2021, 43(9): 1666-1674, 后插2. ZAN Wenbo, LAI Jinxing, QIU Junling, et al. Experiments and numerical simulations on pressure-arch effect for a tunnel in loose deposits[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1666-1674, back insert No. 2. (in Chinese)
[16] 谢亦朋, 杨秀竹, 阳军生, 等. 松散堆积体隧道围岩变形破坏细观特征研究[J]. 岩土力学, 2019, 40(12): 4925-4934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912043.htm XIE Yipeng, YANG Xiuzhu, YANG Junsheng, et al. Mesoscopic characteristics of deformation and failure on surrounding rocks of tunnel through loose deposits[J]. Rock and Soil Mechanics, 2019, 40(12): 4925-4934. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912043.htm
[17] 朱正国, 朱永全, 吴广明, 等. 泥石流堆积体隧道基底加固方法及稳定性分析[J]. 岩土工程学报, 2013, 35(增刊2): 617-621. http://cge.nhri.cn/article/id/15456 ZHU Zhengguo, ZHU Yongquan, WU Guangming, et al. Strengthening method and stability analysis for tunnel base in debris flow accumulation body[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 617-621. (in Chinese) http://cge.nhri.cn/article/id/15456
[18] 杨建周. 穿越松散堆积体围岩加固与隧道施工技术[J]. 铁道科学与工程学报, 2019, 16(5): 1266-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201905021.htm YANG Jianzhou. Mesoscopic characteristics of deformation and failure on surrounding rocks of tunnel through loose deposits[J]. Journal of Railway Science and Engineering, 2019, 16(5): 1266-1273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201905021.htm
[19] 方勇, 符亚鹏, 杨志浩, 等. 公路隧道下穿煤层采空区开挖过程相似模型试验[J]. 土木工程学报, 2015, 48(2): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201502019.htm FANG Yong, FU Yapeng, YANG Zhihao, et al. Similarity model test of highway tunnel excavation beneath mined-out area[J]. China Civil Engineering Journal, 2015, 48(2): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201502019.htm
-
期刊类型引用(9)
1. 梁喜凤,史延楠,秦叶波,姚莹,张慧,王永维. 不同含水率与静置时间下滩涂土壤流变特性试验. 农业工程学报. 2024(01): 182-190 . 百度学术
2. 陈涛. 充分利用海洋环境提升声呐装备性能的研究. 数字海洋与水下攻防. 2024(02): 156-163 . 百度学术
3. 张少雄,宋涛,郝鑫平,张力霆,陈剑刚. 赤泥浆体流变特性和流变模型适用性研究. 三峡大学学报(自然科学版). 2023(01): 48-53 . 百度学术
4. 梁志超,张爱军,任文渊,胡海军,王毓国,李双村. 不同含水率高易溶盐含量的伊犁黄土流变特性. 农业工程学报. 2023(05): 90-99 . 百度学术
5. 刘杰锋,李飒,段贵娟,王奕霖. 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型. 岩土力学. 2023(S1): 341-349 . 百度学术
6. 张博珊,王辉,陈熹. 一种考虑固相浓度作用的改进泥浆流变模型. 土木工程学报. 2023(S1): 134-141 . 百度学术
7. 李家平,朱克超,周旋,陈衍力,李昱洋,马雯波. 深海富稀土沉积物的流变特性研究. 岩土力学. 2022(S1): 348-356 . 百度学术
8. 刘晓磊,陈安铎,张红,陆杨,马路宽,贾永刚. 黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素. 海洋学报. 2021(05): 127-134 . 百度学术
9. 程升,朱超祁,单红仙,刘晓磊,贾永刚. 基于离散元的南海软黏土剪切变形模拟. 科学技术与工程. 2020(09): 3707-3714 . 百度学术
其他类型引用(10)
-
其他相关附件