Scaling laws for quasi-static granular sand at critical state
-
摘要: 土的临界状态理论描述了土有效应力、抗剪强度与土密实度之间的对应关系,大量土力学试验还揭示了土体强度与加载速率存在相关性。考虑到颗粒物质是自然土体的实际载体,从颗粒物理本源出发,将流态颗粒惯性数I发展为考虑砂土密实程度(即初始颗粒体积分数ϕ0)的准静态颗粒物理惯性数Q=ϕ0[ln(I)+α]。以砂土的经典三轴试验数据为基础,探究了处于临界状态土的颗粒物理标度律,发现颗粒的摩擦系数μ与准静态颗粒惯性数Q之间满足简单的μ=ξQ线性关系。新建立的简单物理标度律能够统一刻画处于临界状态砂土的密实状态、剪切速率、围压和粒径等因素与土内摩擦角间复杂的经验关系。为描述受剪颗粒准静态变形的体变规律,进一步探索了临界状态下土颗粒体积分数与准静态颗粒惯性数间的相关性。对三维应力状态情况,引入一个新的无量纲量“中主应力数”对标度律进行拓展,可揭示中主应力对临界状态砂土摩擦特性的影响。Abstract: The critical state theory of soils describes the correspondence between effective stress, shear strength and soil density. Numerous soil mechanics experiments have also revealed a correlation between soil strength and loading rate. Considering that the granular matter is the actual medium of natural soils, a quasi-static inertia number is proposed, i.e., Q=ϕ0[ln(I)+α], for the granular soils considering the particle volume fraction. Based on the classical triaxial test data of soils, the scaling laws of quasi-static deforming sand at the critical state from the perspective of granular physics are explored, and a simple linear relationship i.e., μ=ξQ, is found between the friction coefficient and the quasi-static particle inertia number. The newly established scaling laws can quantitatively describe the influences of the volume fraction, shear rate, confining pressure and particle size on the frictional properties of sand when reaching the critical state. In addition, to quantify the volumetric deformation laws of sand under quasi-static shear, a correlation is obtained between the particle volume fraction ϕ at the critical state and the quasi-static inertia number Q. In attempt to characterize the scaling laws of the three-dimensional stress state, a new dimensionless number (i.e., the intermediate principal stress number) is defined to reveal the influences of the intermediate principal stress on the frictional properties. Thus, the scaling laws are extended.
-
Keywords:
- granular material /
- critical state /
- scaling law /
- Cambridge model /
- sand
-
-
表 1 试验材料的物理指标
Table 1 Physical properties of test materials
材料 Gs d50/mm 密实状态 e F-35 Ottawa 砂 2.65 0.36 疏松 0.733 中等 0.614 致密 0.494 #1玻璃砂 2.65 0.36 疏松 0.928 中等 0.778 致密 0.638 GS#40 Columbia grout砂 2.65 0.36 疏松 0.921 中等 0.762 致密 0.639 表 2 3种材料三轴试验数据获取标度律的拟合参数
Table 2 Fitting parameters of scaling law for obtaining triaxial test data for three types of materials
材料 ξ F-35 Ottawa砂 0.1021 #1 玻璃砂 0.1173 GS#40 Columbia grout砂 0.1179 表 3 主要试验参数
Table 3 Primary experimental parameters
初始孔隙比 Gs d50/mm 剪切速率 0.360 2.72 14.39 0.6 mm/min 姜景山 等[30] 0.333 2.72 14.39 0.6 mm/min 0.308 2.72 14.39 0.6 mm/min 0.283 2.72 14.39 0.6 mm/min 0.189 2.69 26.48 1 mm/min Xiao 等[31] 0.224 2.69 26.48 1 mm/min 0.285 2.69 26.48 1 mm/min 0.317 2.69 26.48 1 mm/min 0.189 2.69 23.48 1 mm/min Xiao 等[32] 0.224 2.69 23.48 1 mm/min 0.285 2.69 23.48 1 mm/min 0.317 2.69 23.48 1 mm/min -
[1] RENDULIC L. Das Grundgesetz der Tonmechanik und sein experimenteller Beweis[J]. Bauingenieur, 1937, 18: 31/32.
[2] HENKEL D J. The relationships between the effective stresses and water content in saturated clays[J]. Géotechnique, 1960, 10(2): 41-54. doi: 10.1680/geot.1960.10.2.41
[3] SCHOFIELD A N, WROTH P. Critical State Soil Mechanics[M]. New York: McGraw-Hill, 1968.
[4] MUIR WOOD D. Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
[5] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
[6] JEFFERIES M G. Nor-Sand: a simple critical state model for sand[J]. Géotechnique, 1993, 43(1): 91-103. doi: 10.1680/geot.1993.43.1.91
[7] KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design[R]. Electric Power Research Inst. , Palo Alto, CA (USA); Cornell Univ. , Ithaca, NY (USA). Geotechnical Engineering Group, 1990.
[8] FU Z, CHEN S, PENG C. Modeling cyclic behavior of rockfill materials in a framework of generalized plasticity[J]. International Journal of Geomechanics, 2014, 14(2): 191-204. doi: 10.1061/(ASCE)GM.1943-5622.0000302
[9] LADE P V. Assessment of test data for selection of 3-D failure criterion for sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(4): 307-333. doi: 10.1002/nag.471
[10] BARAN O, ERTAŞ D, HALSEY T C, et al. Velocity correlations in dense gravity-driven granular chute flow[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(5 pt 1): 051302.
[11] IORDANOFF I, KHONSARI M M. Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime[J]. J Trib, 2004, 126(1): 137-145. doi: 10.1115/1.1633575
[12] SAVAGE S B. The mechanics of rapid granular flows[J]. Advances in Applied Mechanics, 1984, 24: 289-366.
[13] ANCEY C, COUSSOT P, EVESQUE P. A theoretical framework for granular suspensions in a steady simple shear flow[J]. Journal of Rheology, 1999, 43(6): 1673-1699. doi: 10.1122/1.551067
[14] POULIQUEN O, FORTERRE Y. Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane[J]. Journal of Fluid Mechanics, 2002, 453: 133-151. doi: 10.1017/S0022112001006796
[15] WANG C, DENG A, TAHERI A. Three-dimensional discrete element modeling of direct shear test for granular rubber–sand[J]. Computers and Geotechnics, 2018, 97: 204-216. doi: 10.1016/j.compgeo.2018.01.014
[16] DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 72(2 pt 1): 021309.
[17] SAVAGE S B, SAYED M. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell[J]. Journal of Fluid Mechanics, 1984, 142: 391-430. doi: 10.1017/S0022112084001166
[18] GDR M D. On dense granular flows[J]. The European Physical Journal E, 2004, 14: 341-365. doi: 10.1140/epje/i2003-10153-0
[19] FORTERRE Y, POULIQUEN O. Flows of dense granular media[J]. Annu Rev Fluid Mech, 2008, 40: 1-24. doi: 10.1146/annurev.fluid.40.111406.102142
[20] KAMRIN K, KOVAL G. Nonlocal constitutive relation for steady granular flow[J]. Phys Rev Lett, 2012, 108(17): 178301. doi: 10.1103/PhysRevLett.108.178301
[21] HENANN D L, KAMRIN K. A predictive, size-dependent continuum model for dense granular flows[J]. Proc Natl Acad Sci USA, 2013, 110(17): 6730-6735. doi: 10.1073/pnas.1219153110
[22] BOUZID M, TRULSSON M, CLAUDIN P, et al. Nonlocal rheology of granular flows across yield conditions[J]. Phys Rev Lett, 2013, 111(23): 238301. doi: 10.1103/PhysRevLett.111.238301
[23] BOUZID M, IZZET A, TRULSSON M, et al. Non-local rheology in dense granular flows[J]. The European Physical Journal E, 2015, 38(11): 1-15.
[24] JOP P, FORTERRE Y, POULIQUEN O. A constitutive law for dense granular flows[J]. Nature, 2006, 441(7094): 727-730. doi: 10.1038/nature04801
[25] ALSHIBLI K A, CIL M B. Influence of particle morphology on the friction and dilatancy of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 04017118. doi: 10.1061/(ASCE)GT.1943-5606.0001841
[26] AL-SHIBLI K, MACARI E J, STURE S. Digital imaging techniques for assessment of homogeneity of granular materials[J]. Transportation Research Record, 1996, 1526(1): 121-128. doi: 10.1177/0361198196152600115
[27] JOHNSON P C, JACKSON R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. Journal of fluid Mechanics, 1987, 176: 67-93. doi: 10.1017/S0022112087000570
[28] JOHNSON P C, NOTT P, JACKSON R. Frictional-collisional equations of motion for participate flows and their application to chutes[J]. Journal of Fluid Mechanics, 1990, 210: 501-535. doi: 10.1017/S0022112090001380
[29] XIAO Y, LIU H, LIU H, et al. Strength and dilatancy behaviors of dense modeled rockfill material in general stress space[J]. International Journal of Geomechanics, 2016, 16(5): 04016015. doi: 10.1061/(ASCE)GM.1943-5622.0000645
[30] 姜景山, 左永振, 程展林, 等. 围压和密度对粗粒料临界状态力学特性的影响[J]. 长江科学院院报, 2021, 38(5): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202105018.htm JIANG Jingshan, ZUO Yongzhen, CHENG Zhanlin, et al. Effects of confining pressure and density on mechanical properties of coarse granular material under critical state[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 94-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202105018.htm
[31] XIAO Y, LIU H, DING X, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031. doi: 10.1061/(ASCE)GM.1943-5622.0000538
[32] XIAO Y, LIU H, CHEN Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. doi: 10.1061/(ASCE)EM.1943-7889.0000702
-
其他相关附件