圆化离散单元法的改进及其在岩体断裂过程中的应用

    张德沧, 毛佳, 戴妙林, 邵琳玉, 赵兰浩

    张德沧, 毛佳, 戴妙林, 邵琳玉, 赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用[J]. 岩土工程学报, 2024, 46(9): 1974-1983. DOI: 10.11779/CJGE20230420
    引用本文: 张德沧, 毛佳, 戴妙林, 邵琳玉, 赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用[J]. 岩土工程学报, 2024, 46(9): 1974-1983. DOI: 10.11779/CJGE20230420
    ZHANG Decang, MAO Jia, DAI Miaolin, SHAO Linyu, ZHAO Lanhao. Improvement of spheropolyhedral-based discrete element method and its application in fracture process of rock mass[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1974-1983. DOI: 10.11779/CJGE20230420
    Citation: ZHANG Decang, MAO Jia, DAI Miaolin, SHAO Linyu, ZHAO Lanhao. Improvement of spheropolyhedral-based discrete element method and its application in fracture process of rock mass[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1974-1983. DOI: 10.11779/CJGE20230420

    圆化离散单元法的改进及其在岩体断裂过程中的应用  English Version

    基金项目: 

    国家重点研发计划项目 2022YFC3005402

    国家自然科学基金项目 52009034

    河海大学水安全与水科学协同创新中心项目 

    详细信息
      作者简介:

      张德沧(1999—),男,硕士研究生,主要从事离散元方面的研究工作。E-mail: zdc@hhu.edu.cn

      通讯作者:

      毛佳, E-mail: maojia@hhu.edu.cn

    • 中图分类号: TU45

    Improvement of spheropolyhedral-based discrete element method and its application in fracture process of rock mass

    • 摘要: 为精确模拟岩体断裂的演化过程,将有限单元法与圆化多面体离散元法相结合,提出一种用于模拟断裂全过程的三维可变形圆化多面体离散单元法。为模拟块体的真实破坏状态,该方法将每个岩体颗粒都离散成有限单元,沿有限单元的边界嵌入无厚度节理单元,最后采用判断节理单元状态的方式来捕捉断裂过程产生的裂缝,岩体颗粒与断裂表面之间的接触相互作用通过圆化多面体离散元法求解。通过5个算例说明新方法的准确性和有效性,可用于模拟准脆性材料的断裂全过程,且能够捕捉裂缝萌生和扩展以及块体之间的碰撞和变形。
      Abstract: In order to accurately simulate the evolution process of fractures, a three-dimensional deformable spheropolyhedral-based discrete element method is proposed by combining the finite element method with the spheropolyhedral-based discrete element method to simulate the complete fracture process. This method simulates the failure state of rock masses in real life, discretizing each rock particle into a finite element and embedding the zero thickness joint element along the boundary of the finite element. Finally by judging the state of the joint element, the cracks generated during the fracture process are captured, and the contact interaction between rock particles and fracture surfaces is resolved by the spheropolyhedral-based discrete element method. The accuracy and effectiveness of the new method are demonstrated through five numerical examples. The numerical results show that the proposed method is feasible in simulating the complete fracture process of quasi-brittle materials, and can capture crack initiation and propagation, as well as collision and deformation between fragments.
    • 图  1   有限单元边界嵌入节理单元

      Figure  1.   Boundary of finite elements inserted into joint elements

      图  2   节理单元的本构特性

      Figure  2.   Constitutive characteristics of joint elements

      图  3   岩体破裂过程的应力和位移

      Figure  3.   Stress and displacements of rock mass during failure process

      图  4   多面体H和球体S的闵可夫斯基和构成

      Figure  4.   Polyhedral H and sphere Sunder Minkowski sum

      图  5   接触对的几何模型

      Figure  5.   Geometrically-shaped contact pair model

      图  6   虚功法的换算方法

      Figure  6.   Conversion method of virtual work principle

      图  7   本文方法的技术方案

      Figure  7.   Technical proposal of proposed method

      图  8   5346个四面体颗粒最终堆积形式

      Figure  8.   Final packing morphology exhibited by 5346 tetrahedral particles

      图  9   模型网格剖分图

      Figure  9.   Mesh configuration of model

      图  10   本文提出方法预测圆盘的断裂演化过程

      Figure  10.   Prediction of fracture evolution process of disk by proposed method

      图  11   本文提出方法进行巴西圆盘数值试验

      Figure  11.   Numerical tests of Brazilian disk by proposed method

      图  12   上板处的外荷载和试件中心处的拉应力

      Figure  12.   External loads on upper plate and tensile stresses at center of specimen

      图  13   梁的网格结构

      Figure  13.   Mesh configuration of beam

      图  14   单缺口梁的变形结构(放大100倍)

      Figure  14.   Deformation struture of single notched beam (Amplified 100 times)

      图  15   裂缝轨迹数值模拟结果与试验结果的对比

      Figure  15.   Comparison between numerical and experimental results of crack trajectory

      图  16   荷载与CMOD数值模拟与试验结果的对比

      Figure  16.   Comparison of numerical simulation and experimental results of load and CMOD

      图  17   模型的几何形状

      Figure  17.   Geometry of model

      图  18   本文提出方法预测混凝土梁的断裂变化过程

      Figure  18.   Change process of fracture of concrete beam by proposed method

      图  19   素混凝土最终断裂成5个部分[23]

      Figure  19.   Eventually fractured five parts of plain concrete beams

      图  20   梁的最大挠度数值模拟与试验结果的对比

      Figure  20.   Comparison between numerical and experimental results of maximun deflection

      图  21   模型的几何形状

      Figure  21.   Geometry of model

      图  22   t=0.75 ms时刻不同冲击速度下的断裂形态

      Figure  22.   Fracture patterns under different impact velocities when t=0.75 ms

      图  23   破碎模式

      Figure  23.   Broken petterns

    • [1] 陈旭东, CHAN A H C, 杨健. 普通玻璃受冲击破坏的有限离散元方法分析[C]// 全国结构工程学术会议, 厦门, 2015.

      CHEN Xudong, CHAN A H C, YANG Jian. Analysis of the impact damage of monolithic glass using the combined finite-discrete element method[C]// National Conference on Structural Engineering, Xiamen, 2015. (in Chinese)

      [2] 张开雨, 刘丰, 夏开文. 模拟脆性材料动态裂纹扩展的非连续变形分析方法[J]. 岩土工程学报, 2022, 44(1): 125-133. doi: 10.11779/CJGE202201012

      ZHANG Kaiyu, LIU Feng, XIA Kaiwen. Numerical study on dynamic crack propagation of brittle materials by discontinuous deformation analysis[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 125-133. (in Chinese) doi: 10.11779/CJGE202201012

      [3] 喻志发, 于长一, 刘丰, 等. 数值流形法在裂纹扩展中的应用[J]. 岩土工程学报, 2020, 42(4): 751-757. doi: 10.11779/CJGE202004019

      YU Zhifa, YU Changyi, LIU Feng, et al. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. (in Chinese) doi: 10.11779/CJGE202004019

      [4]

      CUNDALL P A., STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29: 47-65. doi: 10.1680/geot.1979.29.1.47

      [5] 陈凌霄, 田文祥, 马刚, 等. 模拟准脆性材料热开裂的热力耦合格构离散单元法[J]. 浙江大学学报(工学版), 2022, 56(9): 1750-1760, 1771. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202209008.htm

      CHEN Lingxiao, TIAN Wenxiang, MA Gang, et al. Thermal-mechanical coupled lattice discrete element method for simulating thermal cracking of quasi-brittle materials[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(9): 1750-1760, 1771. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202209008.htm

      [6] 张卫杰, 高玉峰, 黄雨, 等. 水土耦合SPH数值模型的正则化修正及其应用[J]. 岩土工程学报, 2018, 40(2): 262-269. doi: 10.11779/CJGE201802006

      ZHANG Weijie, GAO Yufeng, HUANG Yu, et al. Normalized correction of soil-water-coupled SPH model and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 262-269. (in Chinese) doi: 10.11779/CJGE201802006

      [7] 李腊梅, 冯春. 一种非连续介质中热传导过程的数值模拟方法[J]. 工程力学, 2016, 33(1): 25-31, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201601005.htm

      LI Lamei, FENG Chun. A numerical simulation method for heat conduction in discontinuous media[J]. Engineering Mechanics, 2016, 33(1): 25-31, 46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201601005.htm

      [8] 毛佳, 赵兰浩, 刘勋楠, 等. 滑坡过程数值模拟的三维距离势离散元法[J]. 中国矿业大学学报, 2020, 49(6): 1094-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202006008.htm

      MAO Jia, ZHAO Lanhao, LIU Xunnan, et al. Numerical simulation of landslides with the three-dimensional distance potential discrete element method[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1094-1100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202006008.htm

      [9] 严成增, 孙冠华, 郑宏, 等. 基于局部单元劈裂的FEM/DEM自适应分析方法[J]. 岩土力学, 2014, 35(7): 2064-2070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407041.htm

      YAN Chengzeng, SUN Guanhua, ZHENG Hong, et al. Adaptive FEM/DEM analysis method based on local splitting elements[J]. Rock and Soil Mechanics, 2014, 35(7): 2064-2070. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407041.htm

      [10]

      ZHANG H, CHEN G Q, ZHENG L, et al. Detection of contacts between three-dimensional polyhedral blocks for discontinuous deformation analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 57-73. doi: 10.1016/j.ijrmms.2015.05.008

      [11]

      MUNJIZA A. The Combined Finite-Discrete Element Method[M]. Chichester, West Sussex, England: Wiley, 2004.

      [12] 叶继红, 齐念. 基于离散元法与有限元法耦合模型的网壳结构倒塌过程分析[J]. 建筑结构学报, 2017, 38(1): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201701006.htm

      YE Jihong, QI Nian. Collapse process simulation of reticulated shells based on coupled DEM/FEM model[J]. Journal of Building Structures, 2017, 38(1): 52-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201701006.htm

      [13] 严成增. FDEM-TM方法模拟岩石热破裂[J]. 岩土工程学报, 2018, 40(7): 1198-1204. doi: 10.11779/CJGE201807005

      YAN Chengzeng. Simulating thermal cracking of rock using FDEM-TM method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1198-1204. (in Chinese) doi: 10.11779/CJGE201807005

      [14]

      ZHAO L H, LIU X N, MAO J, et al. A novel discrete element method based on the distance potential for arbitrary 2D convex elements[J]. International Journal for Numerical Methods in Engineering, 2018, 115: 238-67. doi: 10.1002/nme.5803

      [15] 刘璐, 龙雪, 季顺迎. 基于扩展多面体的离散单元法及其作用于圆桩的冰载荷计算[J]. 力学学报, 2015, 47(6): 1046-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201506018.htm

      LIU Lu, LONG Xue, JI Shunying. Dilated polyhedra based discrete element method and its application of ice load on cylindrical pile[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1046-1057. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201506018.htm

      [16]

      GALINDO-TORRES S A, PEDROSO D M. Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 81(6 pt 1): 061303.

      [17]

      HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7

      [18]

      ZHOU X P, CHENG H. Multidimensional space method for geometrically nonlinear problems under total lagrangian formulation based on the extended finite-element method [J]. Journal of Engineering Mechanics, 2017, 143(7): 04017036. doi: 10.1061/(ASCE)EM.1943-7889.0001241

      [19] 王璐, 徐绯, 杨扬. 完全拉格朗日SPH在冲击问题中的改进和应用[J]. 力学学报, 2022, 54(12): 3297-3309. doi: 10.6052/0459-1879-22-214

      WANG Lu, XU Fei, YANG Yang. Improvement of the total Lagrangian sph and its application in impact problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3297-3309. (in Chinese) doi: 10.6052/0459-1879-22-214

      [20]

      ZHENG F, LEUNG Y F, ZHU J B, et al. Modified predictor-corrector solution approach for efficient discontinuous deformation analysis of jointed rock masses [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(2): 599-624. doi: 10.1002/nag.2881

      [21]

      PATEL S, MARTIN C D. Evaluation of tensile Young's modulus and Poisson's ratio of a Bi-modular rock from the displacement measurements in a Brazilian test[J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 361-373. doi: 10.1007/s00603-017-1345-5

      [22]

      GÁLVEZ J C, ELICES M, GUINEA G V, et al. Mixed mode fracture of concrete under proportional and nonproportional loading[J]. International Journal of Fracture, 1998, 94(3): 267-284. doi: 10.1023/A:1007578814070

      [23]

      MURRAY Y, ABU-ODEH A, BLIGH R. Evaluation of LS-DYNA Concrete material model 159[R]. United States: Federal Highway Administration, Office of Research, Development, and Technology, 2007.

      [24]

      KHANAL M, SCHUBERT W, TOMAS J. Ball impact and crack propagation-simulations of particle compound material[J]. Granular Matter, 2004, 5(4): 177-184. doi: 10.1007/s10035-003-0149-3

    • 期刊类型引用(13)

      1. 张沛杰,王展亮. 石灰和水泥改良软土力学性能及水稳定性研究. 湖南工程学院学报(自然科学版). 2025(01): 79-87 . 百度学术
      2. 罗跃春,甘展孜,曾新雄,王宁伟. 珠江口西岸滨海区软土属性分析. 土工基础. 2024(02): 239-242 . 百度学术
      3. 宋许根. 广州南沙某深厚软土区综合管廊基坑变形破坏分析. 岩石力学与工程学报. 2023(S1): 3629-3642 . 百度学术
      4. 蔡子勇,乔世范,檀俊坤,刘屹颀. 南沙港区深厚淤泥软土特性及空间异性研究. 地下空间与工程学报. 2023(03): 897-910 . 百度学术
      5. 李天降,朱孟君,王哲,宋许根,甄洁,衣凡,雷华阳,郑刚,程雪松. 软土区管廊基坑柔性支护下基坑变形控制标准. 科学技术与工程. 2023(21): 9199-9206 . 百度学术
      6. 田琦,陈国垚,王伟,史宗刚,刘红位. 福建沿海原状软土力学特性试验研究. 水利与建筑工程学报. 2023(05): 78-84 . 百度学术
      7. 裘友强,张留俊,富志鹏,刘军勇,张微,王超. 内陆河湖相软土土性指标统计特征与竖向变化规律研究. 水利水电技术(中英文). 2023(12): 23-34 . 百度学术
      8. 刘彬,徐苏静,张四俊,惠海鹏,居俊. 沿海地区深厚软土工程力学特性分析. 江苏建筑. 2022(03): 101-104 . 百度学术
      9. 罗维高,林惠庭,章志,卢荣富,施雨,周晓敏. 大直径超长距离钢顶管施工技术应用分析. 广东土木与建筑. 2022(08): 71-75 . 百度学术
      10. 李治斌,党星海,蔡明祥,赵健赟,郁林,李先怡. 基于PSInSAR技术的珠海市地表沉降监测与归因分析. 自然灾害学报. 2021(01): 38-46 . 百度学术
      11. 戴巍,陈智超,冯青山,麦凌威,祝敏刚. 木质纤维与水泥共同改良软土的力学性能与微观机制分析. 水力发电. 2021(03): 121-125 . 百度学术
      12. 陆惠平,朱挻,刘泽,何矾,李洪. 绍兴淤泥质软土工程特性. 建筑技术开发. 2021(15): 155-157 . 百度学术
      13. 刘维正,葛孟源,李天雄. 南沙海相软土工程特性原位测试对比与统计规律分析. 岩土工程学报. 2021(S2): 267-275 . 本站查看

      其他类型引用(9)

    图(23)
    计量
    • 文章访问数:  296
    • HTML全文浏览量:  52
    • PDF下载量:  39
    • 被引次数: 22
    出版历程
    • 收稿日期:  2023-05-14
    • 刊出日期:  2024-08-31

    目录

      /

      返回文章
      返回