Three state variables-related constitutive model for coarse-grained soil
-
摘要: 岩土工程中普遍存在材料空间变异性问题,对粗粒土而言,其空间变异性主要体现在颗粒级配与密度的非均匀分布。然而,经典的状态相关理论只能描述密度与应力水平这两个状态量的影响,建立能综合考虑级配、密度和应力水平的粗粒土三阶状态相关本构模型是精细化模拟的迫切需求。通过引入归一化级配参数来定量表征粗粒土初始级配的变化,在此基础上提出了考虑级配、密度和应力水平影响的等向固结线和临界状态线方程,并结合广义塑性理论,建立了粗粒土三阶状态相关本构模型。验证结果表明,该模型仅采用一套模型参数,就能较好地反映粗粒土在不同级配、不同密度、不同围压条件下的应力应变特性,可应用于粗粒土工程中考虑材料空间变异性的数值分析。Abstract: The spatial variability of materials is a common problem in geotechnical engineering. For the coarse-grained soil, the essence of its spatial variability is the uneven distribution of particle gradation and density. However, the classical state-related theory can only describe the influences of density and stress level, which are only two state variables. The development of a three state variables-related constitutive model that considers gradation, density and stress level represents a significant advancement in the field of coarse-grained soil engineering. The introduction of a gradation parameter enables the quantitative characterization of changes in the gradation curve of coarse-grained soil. This has led to the proposal of the critical state equation and isotropic consolidation equation, which considers the effects of gradation, density and stress level. Furthermore, a three-state variables-related constitutive model for coarse-grained soil is established based on the principles of the generalized plasticity theory. The proposed model employs a single set of model parameters, which are capable of accurately representing the stress-strain characteristics of coarse-grained soils under diverse gradations, densities and confining pressure conditions. Furthermore, it can be uesd in the numerical analysis of coarse-grained soil engineering, taking into account the spatial variability of materials.
-
-
表 1 试验方案
Table 1 Test schemes
试验变量 变量值 级配参数IG 0.163,0.207,0.225,0.305 相对密度Dr 0.60,0.75,0.9,1.0 围压σ3/kPa 300,600,1000,1500 表 2 本文堆石料的模型参数
Table 2 Model parameters of rockfills in this study
临界状态参数 λc0 αλc eΓ0 αΓ χΓ Mc 参数值 0.0213 0.0295 0.269 0.260 0.602 1.72 等向固结参数 λi0 αλi κ/10-3 参数值 0.00867 0.0111 6.1 状态相关参数 nd β h0 he nf 参数值 0.748 0.51 1.35 0.98 4.92 -
[1] 刘鑫, 王宇, 李典庆. 考虑土体参数空间变异性的边坡大变形破坏模式研究[J]. 工程地质学报, 2019, 27(5): 1078-1084. LIU Xin, WANG Yu, LI Dianqing. Slope failure modes at large deformation in spatially variable soils[J]. Journal of Engineering Geology, 2019, 27(5): 1078-1084. (in Chinese)
[2] 朱晟, 卢知是. 考虑级配空间随机特性的堆石坝变形应力分析[J]. 河海大学学报(自然科学版), 2021, 49(6): 543-549. doi: 10.3876/j.issn.1000-1980.2021.06.009 ZHU Sheng, LU Zhishi. Deformation and stress analysis of rockfill dams considering spatial randomness of gradation parameter[J]. Journal of Hohai University (Natural Sciences), 2021, 49(6): 543-549. (in Chinese) doi: 10.3876/j.issn.1000-1980.2021.06.009
[3] 刘永涛, 郑东健, 武鑫, 等. 混凝土面板堆石坝水下面板裂缝成因数值分析[J]. 长江科学院院报, 2021, 38(12): 152-157. LIU Yongtao, ZHENG Dongjian, WU Xin, et al. Numerical analysis of cracks in underwater face slab of concrete face rockfill dam[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(12): 152-157. (in Chinese)
[4] 王建娥, 杨杰, 程琳, 等. 考虑材料参数空间变异性的堆石坝非侵入式随机有限元研究[J]. 水资源与水工程学报, 2019, 30(3): 200-207. WANG Jiane, YANG Jie, CHENG Lin, et al. Study on the noninvasive stochastic finite element method of rockfill dam considering spatial variability of material parameters[J]. Journal of Water Resources and Water Engineering, 2019, 30(3): 200-207. (in Chinese)
[5] 刘映晶, 王建华, 尹振宇, 等. 考虑级配效应的粒状材料本构模拟[J]. 岩土工程学报, 2015, 37(2): 299-305. doi: 10.11779/CJGE201502013 LIU Yingjing, WANG Jianhua, YIN Zhenyu, et al. Constitutive modeling for granular materials considering grading effect[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 299-305. (in Chinese) doi: 10.11779/CJGE201502013
[6] 蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357-1364. doi: 10.11779/CJGE201608001 CAI Zhengyin, LI Xiaomei, HAN Lin, et al. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese) doi: 10.11779/CJGE201608001
[7] XIAO Y, MENG M Q, WANG C G, et al. Breakage critical state of gravels with different gradings Part Ⅱ: Constitutive modelling[J]. Transportation Geotechnics, 2023, 43: 101112. doi: 10.1016/j.trgeo.2023.101112
[8] 姜景山, 左永振, 程展林, 等. 围压和密度对粗粒料临界状态力学特性的影响[J]. 长江科学院院报, 2021, 38(5): 94-102. JIANG Jingshan, ZUO Yongzhen, CHENG Zhanlin, et al. Effects of confining pressure and density on mechanical properties of coarse granular material under critical state[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 94-102. (in Chinese)
[9] 郭万里, 朱俊高, 彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报, 2018, 40(6): 1103-1110. doi: 10.11779/CJGE201806016 GUO Wanli, ZHU Jungao, PENG Wenming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110. (in Chinese) doi: 10.11779/CJGE201806016
[10] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
[11] XIAO Y, LIU H L. Elastoplastic constitutive model for rockfill materials considering particle breakage[J]. International Journal of Geomechanics, 2017, 17(1): 04016041. doi: 10.1061/(ASCE)GM.1943-5622.0000681
[12] 李海潮, 马博, 张升. 适用于堆石料的分数阶下加载面模型[J]. 岩土力学, 2021, 42(1): 68-76. LI Haichao, MA Bo, ZHANG Sheng. A fractional sub-loading surface model for rockfill[J]. Rock and Soil Mechanics, 2021, 42(1): 68-76. (in Chinese)
[13] 刘斯宏, 沈超敏, 毛航宇, 等. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898. LIU Sihong, SHEN Chaomin, MAO Hangyu, et al. State-dependent elastoplastic constitutive model for rockfill materials[J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898. (in Chinese)
[14] 孙逸飞, 陈成. 无状态变量的状态依赖剪胀方程及其本构模型[J]. 岩土力学, 2019, 40(5): 1813-1822. SUN Yifei, CHEN Cheng. A state-dependent stress-dilatancy equation without state index and its associated constitutive model[J]. Rock and Soil Mechanics, 2019, 40(5): 1813-1822. (in Chinese)
[15] LI G, LIU Y J, DANO C, et al. Grading-dependent behavior of granular materials: from discrete to continuous modeling[J]. Journal of Engineering Mechanics, 2015, 141(6): 04014172.
[16] GUO W L, CHEN G, WANG J J, et al. Energy-based plastic potential and yield functions for rockfills[J]. Bulletin of Engineering Geology and the Environment, 2021, 81(1): 36.
[17] ALONSO E E, ROMERO E E, ORTEGA E. Yielding of rockfill in relative humidity-controlled triaxial experiments[J]. Acta Geotechnica, 2016, 11(3): 455-477.
[18] CIANTIA M O, ARROYO M, O'SULLIVAN C, et al. Grading evolution and critical state in a discrete numerical model of Fontainebleau sand[J]. Géotechnique, 2019, 69(1): 1-15.
-
其他相关附件