湿度和冻融循环影响下膨胀土的压缩特性及孔隙结构特征

    韩仲, 邹维列, 裴秋阳, 王协群, 张红日

    韩仲, 邹维列, 裴秋阳, 王协群, 张红日. 湿度和冻融循环影响下膨胀土的压缩特性及孔隙结构特征[J]. 岩土工程学报, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367
    引用本文: 韩仲, 邹维列, 裴秋阳, 王协群, 张红日. 湿度和冻融循环影响下膨胀土的压缩特性及孔隙结构特征[J]. 岩土工程学报, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367
    HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367
    Citation: HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367

    湿度和冻融循环影响下膨胀土的压缩特性及孔隙结构特征  English Version

    基金项目: 

    国家自然科学基金项目 52378365

    国家自然科学基金项目 52179109

    国家自然科学基金项目 52078400

    广西重点研发计划项目 AB23075184

    详细信息
      作者简介:

      韩仲(1986—),男,副教授,博士生导师,主要研究方向为长期、复杂环境荷载影响下土工结构的服役性能及防护理论。E-mail: zhong.han@whu.edu.cn

      通讯作者:

      裴秋阳, E-mail: fall_sun@whu.edu.cn

    • 中图分类号: TU43

    Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils

    • 摘要: 通过试验和理论研究,探讨了湿度状态及冻融循环对黑龙江膨胀土的一维压缩特性及孔隙结构特征的影响。将压实膨胀土样平衡至不同含水率后进行冻融循环试验及饱和处理,开展常含水率压缩试验及固结试验分别确定非饱和试样及饱和试样的压缩曲线及相应压缩特性参数,并通过压汞试验测定膨胀土的孔隙结构特征。试验结果表明:①在弹性压缩段,膨胀土的再压缩指数(Ce)对含水率变化不敏感,但在冻融循环后显著增大;②在弹塑性压缩段,随着含水率降低,先期固结压力增大而压缩指数(Cc)减小。冻融循环后,先期固结压力与Cc均减小;③不同湿度和冻融循环条件下,Ce与土体的大孔隙含量(el)间存在统一的线性关系,Ccel、中孔隙含量(em)及土体湿度状态构成的细观参数间存在统一关系。基于试验结果,构建了考虑湿度状态及冻融循环影响的膨胀土压缩曲线模型。该模型能够准确描述压实膨胀土的孔隙比-应力-含水率关系。
      Abstract: Through the experimental and theoretical studies, the effects of humidity and freeze-thaw (FT) cycles on the compression and pore structure characteristics of a compacted expansive soil have been investigated. The compacted specimens are equilibrated to different moisture contents and then subjected to the FT cycles and saturation process. The constant water content compression tests and consolidation tests are conducted to determine the compression curves for unsaturated and saturated specimens, respectively. The mercury intrusion porosimetry tests are performed to determine the pore structure characteristics of the soil. The experimental results indicate that: (1) Within the elastic range, the recompression index (Ce) is insensitive to the moisture content but increases significantly after the FT cycles. (2) Within the elastoplastic range, the preconsolidation pressure increases while the compression index (Cc) decreases as the moisture content decreases. Both the preconsolidation pressure and Cc decrease after the FT cycles. (3) Under different humidity and FT conditions, there exists a unique linear relationship between Ce and the void ratio of macropores (el) and a unique relationship between Cc and mesoscopic parameter that is composed of el, void ratio of medium pores (em) and humidity conditions. Based on the test results, a model is proposed to describe the compression curves of expansive soils considering the effects of humidity and FT cycles. The model is found to be capable of suitably describing the void ratio-stress-moisture content relationships for compacted expansive soils.
    • 图  1   试验流程图

      Figure  1.   Flowchart of tests

      图  2   经历0次和10次冻融循环作用的试样

      Figure  2.   Specimens after 0 and 10 freeze-thaw cycles

      图  3   不同含水率条件下膨胀土试样的压汞试验结果

      Figure  3.   MIP results of specimens with different moisture contents

      图  4   经历脱湿及饱和后试样的压汞试验结果

      Figure  4.   MIP results of specimens after drying and saturation

      图  5   脱湿和饱和过程中各孔隙比的变化规律

      Figure  5.   Variations of eMIP after moisture conditioning and saturation

      图  6   试样经历冻融循环及饱和后的压汞试验结果

      Figure  6.   MIP results of specimens after FT cycles and saturation

      图  7   试样经历冻融循环后孔隙比随含水率的变化曲线

      Figure  7.   Variation of eMIP with w for specimens after FT conditioning

      图  8   冻融循环前后试样的土-水特性

      Figure  8.   Soil-water characteristics before and after FT conditioning

      图  9   冻融前后非饱和试样的压缩曲线

      Figure  9.   Compression curves of unsaturated specimens before and after FT cycles

      图  10   冻融前后饱和试样的压缩曲线

      Figure  10.   Compression curves of saturated specimens before and after FT cycles

      图  11   压缩特性指标随含水率的变化关系

      Figure  11.   Variations of compression indices with w

      图  12   再压缩指数与细观参数的关系

      Figure  12.   Relationship between Ce and mesoscopic parameter

      图  13   压缩指数与细观参数的关系

      Figure  13.   Relationship between Cc and mesoscopic parameters

      图  14   不同竖向荷载下试样的孔隙比随含水率的变化曲线

      Figure  14.   Variations of e with w for specimens under different values of σv

      图  15   试样的e-σv-w关系及其预测结果

      Figure  15.   e-σv-w relationships and their predictions for specimens

      图  16   不同竖向荷载下试样的e-w关系及其预测结果

      Figure  16.   e-w relationships and their predictions for specimens under different values of σv

      表  1   富裕膨胀土的基本物理性质指标

      Table  1   Basic index properties of Fuyu expansive soil

      土粒相对密度Gs 液限wL/% 塑限wP/% 塑性指数IP 自由膨胀率δef /%
      2.68 43 22 21 55
      下载: 导出CSV

      表  2   试样的物理状态参数

      Table  2   Physical properties of specimens

      NFT 含水率w/% 孔隙比ei 干密度ρd/(g·cm-3) 饱和度Sr/% 吸力s/kPa
      0 26.3 0.74 1.54 95.22 57
      23.7 0.68 1.60 93.38 210
      21.1 0.62 1.66 91.32 427
      18.5 0.55 1.73 90.28 999
      15.9 0.50 1.79 86.06 3786
      10 26.3 0.77 1.51 91.51 9
      23.7 0.71 1.56 89.06 28
      21.1 0.65 1.62 86.97 106
      18.5 0.59 1.69 84.58 372
      15.9 0.53 1.75 80.22 960
      下载: 导出CSV

      表  3   e-σv-w三维曲面的拟合参数

      Table  3   Fitting parameters for e-σv-w surfaces

      试样状态 NFT χ/103 ψ ρ μ m
      非饱和 0 7.569 -4.494 0.028 -0.069 0.971
      10 0.221 -3.175 0.012 0.143 1.438
      饱和 0 25.158 -1.366 0.016 0.845 0.209
      10 22.443 -1.302 0.004 1.033 0.158
      下载: 导出CSV
    • [1] 赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. doi: 10.11779/CJGE202106018

      ZHAO Guitao, HAN Zhong, ZOU Weilie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. (in Chinese) doi: 10.11779/CJGE202106018

      [2] 廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.

      LIAO Shiwen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)

      [3]

      SRIDHARAN A, GURTUG Y. Compressibility characteristics of soils[J]. Geotechnical & Geological Engineering, 2005, 23(5): 615-634.

      [4]

      ZOU W L, HAN Z, VANAPALLI S K, et al. Predicting volumetric behavior of compacted clays during compression[J]. Applied Clay Science, 2018, 156: 116-125. doi: 10.1016/j.clay.2018.01.036

      [5]

      GENS A. Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74. doi: 10.1680/geot.9.P.109

      [6]

      TRIPATHY S, SUBBA RAO K S. Cyclic swell-shrink behaviour of a compacted expansive soil[J]. Geotechnical and Geological Engineering, 2009, 27(1): 89-103. doi: 10.1007/s10706-008-9214-3

      [7]

      AJDARI M, HABIBAGAHI G, MASROURI F. The role of suction and degree of saturation on the hydro-mechanical response of a dual porosity silt-bentonite mixture[J]. Applied Clay Science, 2013, 83: 83-90. http://www.xueshufan.com/publication/2050023891

      [8]

      ALONSO E E, PINYOL N M, GENS A. Compacted soil behaviour: initial state, structure and constitutive modelling[J]. Géotechnique, 2013, 63(6): 463-478. doi: 10.1680/geot.11.P.134

      [9]

      HAN Z, VANAPALLI S K, ZOU W L, et al. Modelling virgin compression line of compacted unsaturated soils[J]. Acta Geotechnica, 2019, 14(6): 1991-2006. doi: 10.1007/s11440-019-00767-0

      [10]

      JOTISANKASA A, RIDLEY A, COOP M. Collapse behavior of compacted silty clay in suction-monitored oedometer apparatus[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 867-877. doi: 10.1061/(ASCE)1090-0241(2007)133:7(867)

      [11]

      MONROY R, ZDRAVKOVIC L, RIDLEY A M. Mechanical behaviour of unsaturated expansive clay under K0 conditions[J]. Engineering Geology, 2015, 197: 112-131. doi: 10.1016/j.enggeo.2015.08.006

      [12]

      BURTON G J, PINEDA J A, SHENG D, et al. Exploring one-dimensional compression of compacted clay under constant degree of saturation paths[J]. Géotechnique, 2016, 66(5): 435-440. doi: 10.1680/jgeot.14.P.181

      [13]

      BURTON G J, SHENG D C, AIREY D. Experimental study on volumetric behaviour of Maryland clay and the role of degree of saturation[J]. Canadian Geotechnical Journal, 2014, 51(12): 1449-1455. doi: 10.1139/cgj-2013-0332

      [14]

      ZHOU A N, SHENG D C, SLOAN S W, et al. Interpretation of unsaturated soil behaviour in the stress-saturation space, Ⅰ: volume change and water retention behaviour[J]. Computers and Geotechnics, 2012, 43: 178-187. doi: 10.1016/j.compgeo.2012.04.010

      [15]

      SHENG D C. Review of fundamental principles in modelling unsaturated soil behaviour[J]. Computers and Geotechnics, 2011, 38(6): 757-776. doi: 10.1016/j.compgeo.2011.05.002

      [16] 程培峰, 王佳康. 冻融循环对原状过湿土固结变形特性的影响[J]. 冰川冻土, 2019, 41(4): 858-864.

      CHENG Peifeng, WANG Jiakang. Effect of freezing-thawing cycles on consolidation deformation characteristics of natural over-wet soil[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 858-864. (in Chinese)

      [17] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

      Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

      [18]

      LU Y, LIU S H, WENG L P, et al. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles[J]. Engineering Geology, 2016, 208: 93-99. doi: 10.1016/j.enggeo.2016.04.023

      [19]

      DING L Q, HAN Z, ZOU W L, et al. Characterizing hydro-mechanical behaviours of compacted subgrade soils considering effects of freeze-thaw cycles[J]. Transportation Geotechnics, 2020, 24: 100392. doi: 10.1016/j.trgeo.2020.100392

      [20] 非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 中国建筑工业出版社, 2023.

      Standard for Unsaturated Soil Testing Method: T/CECS 1337—2023[S]. Beijing: China Architecture & Building Press, 2023. (in Chinese)

      [21]

      ZHANG F, CUI Y J, YE W M. Distinguishing macro- and micro-pores for materials with different pore populations[J]. Géotechnique, 2018, 8(2): 102-110. doi: 10.1680/jgele.17.00144

      [22]

      SASANIAN S, NEWSON T A. Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents[J]. Engineering Geology, 2013, 158: 15-22. doi: 10.1016/j.enggeo.2013.03.002

      [23]

      CASAGRANDE A. The determination of the precon-solidation load and its practical significance[J]. Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, 1936, 3: 60-64.

      [24]

      CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2006, 57(2): 258-268. doi: 10.1111/j.1365-2389.2005.00739.x

    • 期刊类型引用(1)

      1. 史晓英,陈静,白冰. EICP技术联合生物炭修复重金属铅污染土研究. 水利与建筑工程学报. 2025(02): 213-220 . 百度学术

      其他类型引用(0)

    图(16)  /  表(3)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 1
    出版历程
    • 收稿日期:  2023-04-25
    • 网络出版日期:  2024-08-19
    • 刊出日期:  2025-02-28

    目录

      /

      返回文章
      返回