Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils
-
摘要: 通过试验和理论研究,探讨了湿度状态及冻融循环对黑龙江膨胀土的一维压缩特性及孔隙结构特征的影响。将压实膨胀土样平衡至不同含水率后进行冻融循环试验及饱和处理,开展常含水率压缩试验及固结试验分别确定非饱和试样及饱和试样的压缩曲线及相应压缩特性参数,并通过压汞试验测定膨胀土的孔隙结构特征。试验结果表明:①在弹性压缩段,膨胀土的再压缩指数(Ce)对含水率变化不敏感,但在冻融循环后显著增大;②在弹塑性压缩段,随着含水率降低,先期固结压力增大而压缩指数(Cc)减小。冻融循环后,先期固结压力与Cc均减小;③不同湿度和冻融循环条件下,Ce与土体的大孔隙含量(el)间存在统一的线性关系,Cc与el、中孔隙含量(em)及土体湿度状态构成的细观参数间存在统一关系。基于试验结果,构建了考虑湿度状态及冻融循环影响的膨胀土压缩曲线模型。该模型能够准确描述压实膨胀土的孔隙比-应力-含水率关系。Abstract: Through the experimental and theoretical studies, the effects of humidity and freeze-thaw (FT) cycles on the compression and pore structure characteristics of a compacted expansive soil have been investigated. The compacted specimens are equilibrated to different moisture contents and then subjected to the FT cycles and saturation process. The constant water content compression tests and consolidation tests are conducted to determine the compression curves for unsaturated and saturated specimens, respectively. The mercury intrusion porosimetry tests are performed to determine the pore structure characteristics of the soil. The experimental results indicate that: (1) Within the elastic range, the recompression index (Ce) is insensitive to the moisture content but increases significantly after the FT cycles. (2) Within the elastoplastic range, the preconsolidation pressure increases while the compression index (Cc) decreases as the moisture content decreases. Both the preconsolidation pressure and Cc decrease after the FT cycles. (3) Under different humidity and FT conditions, there exists a unique linear relationship between Ce and the void ratio of macropores (el) and a unique relationship between Cc and mesoscopic parameter that is composed of el, void ratio of medium pores (em) and humidity conditions. Based on the test results, a model is proposed to describe the compression curves of expansive soils considering the effects of humidity and FT cycles. The model is found to be capable of suitably describing the void ratio-stress-moisture content relationships for compacted expansive soils.
-
Keywords:
- expansive soil /
- humidity /
- freeze-thaw cycle /
- compression characteristic /
- pore structure
-
-
表 1 富裕膨胀土的基本物理性质指标
Table 1 Basic index properties of Fuyu expansive soil
土粒相对密度Gs 液限wL/% 塑限wP/% 塑性指数IP 自由膨胀率δef /% 2.68 43 22 21 55 表 2 试样的物理状态参数
Table 2 Physical properties of specimens
NFT 含水率w/% 孔隙比ei 干密度ρd/(g·cm-3) 饱和度Sr/% 吸力s/kPa 0 26.3 0.74 1.54 95.22 57 23.7 0.68 1.60 93.38 210 21.1 0.62 1.66 91.32 427 18.5 0.55 1.73 90.28 999 15.9 0.50 1.79 86.06 3786 10 26.3 0.77 1.51 91.51 9 23.7 0.71 1.56 89.06 28 21.1 0.65 1.62 86.97 106 18.5 0.59 1.69 84.58 372 15.9 0.53 1.75 80.22 960 表 3 e-σv-w三维曲面的拟合参数
Table 3 Fitting parameters for e-σv-w surfaces
试样状态 NFT χ/103 ψ ρ μ m 非饱和 0 7.569 -4.494 0.028 -0.069 0.971 10 0.221 -3.175 0.012 0.143 1.438 饱和 0 25.158 -1.366 0.016 0.845 0.209 10 22.443 -1.302 0.004 1.033 0.158 -
[1] 赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. doi: 10.11779/CJGE202106018 ZHAO Guitao, HAN Zhong, ZOU Weilie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. (in Chinese) doi: 10.11779/CJGE202106018
[2] 廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984. LIAO Shiwen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
[3] SRIDHARAN A, GURTUG Y. Compressibility characteristics of soils[J]. Geotechnical & Geological Engineering, 2005, 23(5): 615-634.
[4] ZOU W L, HAN Z, VANAPALLI S K, et al. Predicting volumetric behavior of compacted clays during compression[J]. Applied Clay Science, 2018, 156: 116-125. doi: 10.1016/j.clay.2018.01.036
[5] GENS A. Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74. doi: 10.1680/geot.9.P.109
[6] TRIPATHY S, SUBBA RAO K S. Cyclic swell-shrink behaviour of a compacted expansive soil[J]. Geotechnical and Geological Engineering, 2009, 27(1): 89-103. doi: 10.1007/s10706-008-9214-3
[7] AJDARI M, HABIBAGAHI G, MASROURI F. The role of suction and degree of saturation on the hydro-mechanical response of a dual porosity silt-bentonite mixture[J]. Applied Clay Science, 2013, 83: 83-90. http://www.xueshufan.com/publication/2050023891
[8] ALONSO E E, PINYOL N M, GENS A. Compacted soil behaviour: initial state, structure and constitutive modelling[J]. Géotechnique, 2013, 63(6): 463-478. doi: 10.1680/geot.11.P.134
[9] HAN Z, VANAPALLI S K, ZOU W L, et al. Modelling virgin compression line of compacted unsaturated soils[J]. Acta Geotechnica, 2019, 14(6): 1991-2006. doi: 10.1007/s11440-019-00767-0
[10] JOTISANKASA A, RIDLEY A, COOP M. Collapse behavior of compacted silty clay in suction-monitored oedometer apparatus[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 867-877. doi: 10.1061/(ASCE)1090-0241(2007)133:7(867)
[11] MONROY R, ZDRAVKOVIC L, RIDLEY A M. Mechanical behaviour of unsaturated expansive clay under K0 conditions[J]. Engineering Geology, 2015, 197: 112-131. doi: 10.1016/j.enggeo.2015.08.006
[12] BURTON G J, PINEDA J A, SHENG D, et al. Exploring one-dimensional compression of compacted clay under constant degree of saturation paths[J]. Géotechnique, 2016, 66(5): 435-440. doi: 10.1680/jgeot.14.P.181
[13] BURTON G J, SHENG D C, AIREY D. Experimental study on volumetric behaviour of Maryland clay and the role of degree of saturation[J]. Canadian Geotechnical Journal, 2014, 51(12): 1449-1455. doi: 10.1139/cgj-2013-0332
[14] ZHOU A N, SHENG D C, SLOAN S W, et al. Interpretation of unsaturated soil behaviour in the stress-saturation space, Ⅰ: volume change and water retention behaviour[J]. Computers and Geotechnics, 2012, 43: 178-187. doi: 10.1016/j.compgeo.2012.04.010
[15] SHENG D C. Review of fundamental principles in modelling unsaturated soil behaviour[J]. Computers and Geotechnics, 2011, 38(6): 757-776. doi: 10.1016/j.compgeo.2011.05.002
[16] 程培峰, 王佳康. 冻融循环对原状过湿土固结变形特性的影响[J]. 冰川冻土, 2019, 41(4): 858-864. CHENG Peifeng, WANG Jiakang. Effect of freezing-thawing cycles on consolidation deformation characteristics of natural over-wet soil[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 858-864. (in Chinese)
[17] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[18] LU Y, LIU S H, WENG L P, et al. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles[J]. Engineering Geology, 2016, 208: 93-99. doi: 10.1016/j.enggeo.2016.04.023
[19] DING L Q, HAN Z, ZOU W L, et al. Characterizing hydro-mechanical behaviours of compacted subgrade soils considering effects of freeze-thaw cycles[J]. Transportation Geotechnics, 2020, 24: 100392. doi: 10.1016/j.trgeo.2020.100392
[20] 非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 中国建筑工业出版社, 2023. Standard for Unsaturated Soil Testing Method: T/CECS 1337—2023[S]. Beijing: China Architecture & Building Press, 2023. (in Chinese)
[21] ZHANG F, CUI Y J, YE W M. Distinguishing macro- and micro-pores for materials with different pore populations[J]. Géotechnique, 2018, 8(2): 102-110. doi: 10.1680/jgele.17.00144
[22] SASANIAN S, NEWSON T A. Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents[J]. Engineering Geology, 2013, 158: 15-22. doi: 10.1016/j.enggeo.2013.03.002
[23] CASAGRANDE A. The determination of the precon-solidation load and its practical significance[J]. Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, 1936, 3: 60-64.
[24] CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2006, 57(2): 258-268. doi: 10.1111/j.1365-2389.2005.00739.x
-
期刊类型引用(1)
1. 史晓英,陈静,白冰. EICP技术联合生物炭修复重金属铅污染土研究. 水利与建筑工程学报. 2025(02): 213-220 . 百度学术
其他类型引用(0)
-
其他相关附件