Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment
-
摘要: 残余强度对滑坡的变形、稳定性具有重要影响,滑坡运动全过程中往往涉及到变速率问题,具体表现为加速率和减速率作用。为研究膨胀土残余强度的加速率和减速率效应,开展了一系列变速率环剪试验,分析了膨胀土残余强度在不同加速率和减速率条件下的变化规律,并讨论了残余强度的加速率和减速率效应在滑坡不同变形发展阶段中起的作用。结果表明:加速率和减速率均对残余强度具有强化作用(正作用),加速率对残余强度的强化作用比减速率的更显著,在较大法向应力条件下残余强度的加速率和减速率效应更显著。残余强度的加速率和减速率效应是剪切速率变化导致剪切面状态变化的结果,剪切面上土颗粒在变速率条件下须重新调整以适应新的剪切速率条件,从而导致了残余强度变化。在滑坡运动全过程当中,残余强度的加速率和减速率效应对滑坡向减速堆积状态演化有利。Abstract: The residual strength has a key impact on the deformation and stability of landslides. The whole process of landslide movement often involves the phenomenon of variable shear rates, which is manifested by the acceleration rate and deceleration rate. In order to investigate the effects of the acceleration and deceleration rates on the residual strength of expansive soils, a series of ring shear tests with variable shear rates are conducted to analyze the variation rules of residual strength of expansive soils under different acceleration and deceleration rates, and the role of the effects of the acceleration and deceleration rates of the residual strength at different deformation stages of landslides is discussed. The results show that both the acceleration rate and the deceleration rate have a strengthening effect on the residual strength (positive effects), and the strengthening effects of the acceleration rate on the residual strength are more significant than those of the deceleration rate. The effects of the acceleration and deceleration rates on the residual strength are more significant under the larger normal stress conditions. The effects of the acceleration and deceleration rates on the residual strength are considered to be the result of changes in the state of the shear plane caused by changes of the shear rate, and the soil particles in the shear plane must be readjusted to adapt to the new shear rate conditions under variable shear rate conditions, resulting in changes in the residual strength. During the whole process of landslide movement, the effects of the acceleration and deceleration rates on the residual strength are beneficial for the evolution of landslides towards a deceleration accumulation state.
-
Keywords:
- expansive soil /
- residual strength /
- rate effect /
- ring shear test /
- landslide
-
-
表 1 试验膨胀土基本物性参数
Table 1 Basic physical parameters of test expansive soils
天然密度ρ/(g·cm-3) 相对质量密度Gs 天然含水率w /% 液限wL/% 塑限wP/% 塑性指数IP 液性指数IL 自由膨胀率δef /% 1.97 2.73 26.06 47.3 22.1 25.2 0.12 50 -
[1] 孔令伟, 陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报, 2012, 45(5): 141-161. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htm KONG Lingwei, CHEN Zhenghan. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5): 141-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htm
[2] KATTI D R, SRINIVASAMURTHY L, KATTI K S. Molecular modeling of initiation of interlayer swelling in Na–montmorillonite expansive clay[J]. Canadian Geotechnical Journal, 2015, 52(9): 1385-1395. doi: 10.1139/cgj-2014-0309
[3] 吴珺华, 袁俊平, 卢廷浩. 非饱和膨胀土边坡的稳定性分析[J]. 岩土力学, 2008, 29(增刊1): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1072.htm WU Junhua, YUAN Junping, LU Tinghao. Stability analysis of unsaturated expansive soil slope[J]. Rock and Soil Mechanics, 2008, 29(S1): 363-367. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1072.htm
[4] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1-15. http://cge.nhri.cn/cn/article/id/11325 BAO Chenggang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1-15. (in Chinese) http://cge.nhri.cn/cn/article/id/11325
[5] NIU X Q. The first stage of the middle-line south-to-north water-transfer project[J]. Engineering, 2022, 16: 21-28. doi: 10.1016/j.eng.2022.07.001
[6] YAN J B, ZOU Z X, MU R, et al. Evaluating the stability of Outang landslide in the Three Gorges Reservoir Area considering the mechanical behavior with large deformation of the slip zone[J]. Natural Hazards, 2022, 112(3): 2523-2547. doi: 10.1007/s11069-022-05276-0
[7] LIAN B Q, PENG J B, WANG X G, et al. Moisture content effect on the ring shear characteristics of slip zone loess at high shearing rates[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(2): 999-1008. doi: 10.1007/s10064-019-01597-w
[8] 范志强, 唐辉明, 谭钦文, 等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. doi: 10.11779/CJGE201909014 FAN Zhiqiang, TANG Huiming, TAN Qinwen, et al. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. (in Chinese) doi: 10.11779/CJGE201909014
[9] MIAO H B, WANG G H. Effects of clay content on the shear behaviors of sliding zone soil originating from muddy interlayers in the Three Gorges Reservoir, China[J]. Engineering Geology, 2021, 294: 106380. doi: 10.1016/j.enggeo.2021.106380
[10] ZHU R S, XIE W L, LIU Q Q, et al. Shear behavior of sliding zone soil of loess landslides via ring shear tests in the South Jingyang Plateau[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(6): 244. doi: 10.1007/s10064-022-02719-7
[11] LIAN B Q, WANG X G, PENG J B, et al. Shear rate effect on the residual strength characteristics of saturated loess in naturally drained ring shear tests[J]. Natural Hazards and Earth System Sciences, 2020, 20(10): 2843-2856. doi: 10.5194/nhess-20-2843-2020
[12] MIAO H B, WANG G H. Shear rate effect on the residual strength of saturated clayey and granular soils under low- to high-rate continuous shearing[J]. Engineering Geology, 2022, 308: 106821. doi: 10.1016/j.enggeo.2022.106821
[13] KANG X, WANG S, WU W, et al. Residual state rate effects of shear-zone soil regulating slow-to-fast transition of catastrophic landslides[J]. Engineering Geology, 2022, 304: 106692. doi: 10.1016/j.enggeo.2022.106692
[14] 孙涛, 洪勇, 栾茂田, 等. 采用环剪仪对超固结黏土抗剪强度特性的研究[J]. 岩土力学, 2009, 30(7): 2000-2004, 2010. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907024.htm SUN Tao, HONG Yong, LUAN Maotian, et al. Shear strength behavior of overconsolidated clay in ring shear tests[J]. Rock and Soil Mechanics, 2009, 30(7): 2000-2004, 2010. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907024.htm
[15] 周葆春, 王江伟, 单丽霞, 等. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究[J]. 岩土工程学报, 2024, 46(6): 1325-1331. doi: 10.11779/CJGE20230225 ZHOU Baochun, WANG Jiangwei, SHAN Lixia, et al. Torsional ring shear tests on residual strength of low, medium, high swelling soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1325-1331. (in Chinese) doi: 10.11779/CJGE20230225
[16] Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Fine-Grained Soils: ASTM D6467-21[S]. West Conshohocken: ASTM International, 2021.
[17] 谢辉辉, 许振浩, 刘清秉, 等. 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(增刊1): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1037.htm XIE Huihui, XU Zhenhao, LIU Qingbing, et al. Evolution of peak strength and residual strength of weak expansive soil under drying-wetting cycle paths[J]. Rock and Soil Mechanics, 2019, 40(S1): 245-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1037.htm
[18] 王顺, 项伟, 崔德山, 等. 不同环剪方式下滑带土残余强度试验研究[J]. 岩土力学, 2012, 33(10): 2967-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm WANG Shun, XIANG Wei, CUI Deshan, et al. Study of residual strength of slide zone soil under different ring-shear tests[J]. Rock and Soil Mechanics, 2012, 33(10): 2967-2972. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm
[19] KIMURA S, NAKAMURA S, VITHANA S B, et al. Shearing rate effect on residual strength of landslide soils in the slow rate range[J]. Landslides, 2014, 11(6): 969-979. doi: 10.1007/s10346-013-0457-6
[20] DUONG N T, SUZUKI M, VAN HAI N. Rate and acceleration effects on residual strength of Kaolin and Kaolin-bentonite mixtures in ring shearing[J]. Soils and Foundations, 2018, 58(5): 1153-1172. doi: 10.1016/j.sandf.2018.05.011
[21] YAN J B, KONG L W, WANG J T. Evolution law of small strain shear modulus of expansive soil: from a damage perspective[J]. Engineering Geology, 2023, 315: 107017. doi: 10.1016/j.enggeo.2023.107017
[22] 洪勇, 孙涛, 栾茂田, 等. 土工环剪仪的开发及其应用研究现状[J]. 岩土力学, 2009, 30(3): 628-634. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903011.htm HONG Yong, SUN Tao, LUAN Maotian, et al. Development and application of geotechnical ring shear apparatus: an overview[J]. Rock and Soil Mechanics, 2009, 30(3): 628-634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903011.htm
[23] MAZZANTI P, BOZZANO F, CIPRIANI I, et al. New insights into the temporal prediction of landslides by a terrestrial SAR interferometry monitoring case study[J]. Landslides, 2015, 12(1): 55-68. doi: 10.1007/s10346-014-0469-x
[24] 何建乔, 魏厚振, 孟庆山, 等. 大位移剪切下钙质砂破碎演化特性[J]. 岩土力学, 2018, 39(1): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801021.htm HE Jianqiao, WEI Houzhen, MENG Qingshan, et al. Evolution of particle breakage of calcareous sand under large displacement shearing[J]. Rock and Soil Mechanics, 2018, 39(1): 165-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801021.htm
[25] BISHOP A W, GREEN G E, GARGA V K, et al. A new ring shear apparatus and its application to the measurement of residual strength[J]. Géotechnique, 1971, 21(4): 273-328. doi: 10.1680/geot.1971.21.4.273
[26] 殷宗泽, 徐彬. 反映裂隙影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2011, 33(3): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103027.htm YIN Zongze, XU Bin. Slope stability of expansive soil under fissure influence[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 454-459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103027.htm
[27] LU J F, KONG L W, LIU X Y, et al. Multihazard risk model for reliability analysis of expansive soil landslide based on T–S fuzzy logic[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8(2): 04022008. doi: 10.1061/AJRUA6.0001225
-
其他相关附件