• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑土塞效应的开口管桩沉桩与承载全过程离散元分析

李立辰, 刘卓, 刘浩, 吴文兵, 罗仑博, 蒋国盛, 梅国雄

李立辰, 刘卓, 刘浩, 吴文兵, 罗仑博, 蒋国盛, 梅国雄. 考虑土塞效应的开口管桩沉桩与承载全过程离散元分析[J]. 岩土工程学报, 2024, 46(7): 1471-1480. DOI: 10.11779/CJGE20230340
引用本文: 李立辰, 刘卓, 刘浩, 吴文兵, 罗仑博, 蒋国盛, 梅国雄. 考虑土塞效应的开口管桩沉桩与承载全过程离散元分析[J]. 岩土工程学报, 2024, 46(7): 1471-1480. DOI: 10.11779/CJGE20230340
LI Lichen, LIU Zhuo, LIU Hao, WU Wenbing, LUO Lunbo, JIANG Guosheng, MEI Guoxiong. DEM analysis of installation and bearing process of open-ended piles considering plugging effects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1471-1480. DOI: 10.11779/CJGE20230340
Citation: LI Lichen, LIU Zhuo, LIU Hao, WU Wenbing, LUO Lunbo, JIANG Guosheng, MEI Guoxiong. DEM analysis of installation and bearing process of open-ended piles considering plugging effects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1471-1480. DOI: 10.11779/CJGE20230340

考虑土塞效应的开口管桩沉桩与承载全过程离散元分析  English Version

基金项目: 

国家自然科学基金项目 52178371

国家自然科学基金项目 52308383

湖北省自然科学基金青年项目 2023AFB008

中国博士后科学基金面上项目 2022M712964

详细信息
    作者简介:

    李立辰(1994—),男,博士,助理研究员,主要从事桩基工程理论与技术方面的教学与科研工作。E-mail: 20121003645@cug.edu.cn

    通讯作者:

    吴文兵, E-mail: zjuwwb1126@163.com

  • 中图分类号: TU470

DEM analysis of installation and bearing process of open-ended piles considering plugging effects

  • 摘要: 开口管桩贯入过程中会产生复杂的土塞效应,显著影响管桩的沉桩过程与承载特性。考虑到试验方法成本高、周期长、且难以直观反映土塞与管桩的相互作用特性,基于离散元方法开展砂土地基中静压开口管桩沉桩与承载全过程模拟分析。基于室内试验数据对离散元模型参数进行标定,并采用周期性单元复制法生成均质且应力沿深度线性分布的地基模型。基于土体变形特征,揭示管桩中土塞的主动拱与被动拱分布特征。进一步地,结合土塞参数的演化规律,得出土塞增长率(IFR)对土塞状态变化更为敏感,且土塞阻力的发挥趋势与IFR值变化趋势有较高的相似性。基于管桩静载试验模拟,得出静载下开口管桩呈完全闭塞状态,土塞的荷载-位移响应呈弹塑性,并最终建立考虑CPT锥尖阻力、土塞效应、管桩尺寸的静压开口管桩桩端阻力经验计算公式。本文研究成果揭示了土塞的形成演化过程与承载机制,对于考虑土塞效应的开口管桩沉桩阻力预测与承载力计算具有一定参考价值。
    Abstract: The penetration process of open-ended piles will cause complex plugging effects, which further influence the installation and bearing characteristics of piles. Considering the high cost, long period and limitations in reflecting the interaction between piles and soil plugs of the traditional experimental approach, the jacking installation and subsequent loading process of open-ended piles in sand are simulated based on the discrete element method (DEM). The periodic cell replication method is used to generate a homogeneous foundation sample with linear stress distribution. Based on the analysis of the soil deformation characteristics, the characteristics of the active arch and passive arch distribution of the soil plugs are revealed. Based on the analysis of the evolution of soil plugging parameters and plug bearing characteristics, it is found that the incremental filling ratio (IFR) is more sensitive to the plug behavior, and the development of plug resistance shows good consistency with the trend of the IFR value. Also, the open-ended piles are in the fully plugged mode under the static loads, and the load-displacement response of soil plugs is elastic-plastic. Finally, the method for calculating the end bearing capacity of open-ended jacked piles is established by considering the CPT cone resistances, plugging effects and pile size effects. The above results reveal the evolution process and bearing mechanism of soil plugs and can provide reference value for the prediction of installation resistance and calculation of bearing capacity of open-ended piles considering soil plugging effects.
  • 图  1   应力应变曲线标定结果

    Figure  1.   Calibrated results of stress-strain response

    图  2   地基模型示意图

    Figure  2.   Schematic view of soil foundation

    图  3   初始平衡状态下地基参数沿深度分布特征

    Figure  3.   Distribution of foundation parameters at balance

    图  4   不同贯入速度下P2沉桩总阻力发展特征

    Figure  4.   Development of installation resistance for P2 under different penetration speeds

    图  5   沉桩结束时桩周土体变形特征

    Figure  5.   Soil deformations around piles at the end of pile installation

    图  6   沉桩过程中桩端土体运移轨迹特征

    Figure  6.   Particle movements relative to pile tip during pile Installation

    图  7   土塞参数随贯入深度变化特征

    Figure  7.   Development of soil plugging parameter with penetration.depth

    图  8   土塞增长率与土塞率经验拟合关系

    Figure  8.   Relationship between IFR and PLR

    图  9   沉桩阻力随贯入深度变化特征

    Figure  9.   Development of pile installation resistance with penetration depth

    图  10   单位内摩阻力随贯入深度变化特征

    Figure  10.   Development of unit inner shaft resistance with penetration depth

    图  11   内摩阻力沿桩身分布特征

    Figure  11.   Distribution of inner shaft resistance

    图  12   承载结束时桩周土体变形特征

    Figure  12.   Soil deformations around pile at the end of static loading

    图  13   桩顶位移对贯入阻力的影响

    Figure  13.   Development of penetration resistance with displacement of pile head

    图  14   qplug/qcqann/qc与IFR经验拟合关系

    Figure  14.   Relationship between qplug/qc, qann/qc and IFR

    图  15   归一化桩端阻力(qb/qc)经验拟合关系

    Figure  15.   Normalized relationship between qb/qc and Arb, eff

    表  1   UWA硅质砂及其等效离散砂样参数

    Table  1   Properties of UWA superfine sand and its DEM analogue

    参数 Gs 颗粒尺寸/mm Cu Cc /(°)
    d10 d50 d60
    试验值 2.67 0.12 0.18 0.20 1.67 1.020 33
    模拟值 2.67 1.80 2.70 3.00 1.67 0.975 32
    注:为极限状态摩擦角,CuCc分别为不均匀系数和曲率系数。
    下载: 导出CSV

    表  2   离散元模型参数

    Table  2   Parameters for discrete model

    地基土样
    kn/(N·m-1) ks/(N·m-1) μ μr βn βs Md kn/(N·m-1) ks/(N·m-1) μw kn/(N·m-1) ks/(N·m-1) μp
    1×108 2×107 0.5 0.1 0.45 0.1 0.1 3 1×1010 1×1010 0 1.5×109 1.5×109 0.5
    注:knks分别为法向刚度和剪切刚度;μ为摩擦系数;为阻尼比;μr为滚动摩擦系数;βn为法向极限阻尼比;βs为剪切极限阻尼比;Md为黏壶模式;μw为墙摩擦系数;μp为桩摩擦系数。
    下载: 导出CSV
  • [1] 陆昭球, 高倚山, 宋铭栋. 关于开口钢管桩工作性状的几点认识[J]. 岩土工程学报, 1999, 21(1): 111-114. doi: 10.3321/j.issn:1000-4548.1999.01.024

    LU Zhaoqiu, GAO Yishan, SONG Mingdong. Some knowledge about working performance open-end steel pipe pile[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 111-114. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.01.024

    [2] 李立辰. 考虑土塞效应的管桩与复合单桩基础承载特性试验及数值研究[D]. 武汉: 中国地质大学(武汉), 2021.

    LI Lichen. Experimental and Numerical Research on the Bearing Characteristics of Open-ended Pile and Hybrid Pile Foundation Considering Plugging Effect[D]. Wuhan: China University of Geosciences (Wuhan), 2021. (in Chinese)

    [3] 张忠苗, 刘俊伟, 俞峰, 等. 静压预应力混凝土管桩土塞效应试验研究[J]. 岩土力学, 2011, 32(8): 2274-2280. doi: 10.3969/j.issn.1000-7598.2011.08.005

    ZHANG Zhongmiao, LIU Junwei, YU Feng, et al. Research on plugging effect of jacked prestressed concrete pipe pile[J]. Rock and Soil Mechanics, 2011, 32(8): 2274-2280. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.08.005

    [4] 吴文兵, 蒋国盛, 王奎华, 等. 土塞效应对管桩纵向动力特性的影响研究[J]. 岩土工程学报, 2014, 36(6): 1129-1141. doi: 10.11779/CJGE201406019

    WU Wenbing, JIANG Guosheng, WANG Kuihua, et al. Influence of soil plug effect on vertical dynamic response of pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1129-1141. (in Chinese) doi: 10.11779/CJGE201406019

    [5]

    RANDOLPH M F, LEONG E C, HOULSBY G T. One-dimensional analysis of soil plugs in pipe piles[J]. Géotechnique, 1991, 41(4): 587-598. doi: 10.1680/geot.1991.41.4.587

    [6] 郑俊杰, 聂重军, 鲁燕儿. 基于土塞效应的柱形孔扩张问题解析解[J]. 岩石力学与工程学报, 2006, 25(增刊2): 4004-4008. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2104.htm

    ZHENG Junjie, NIE Chongjun, LU Yaner. Analytical solutions of cylindrical cavity expansion problems considering plugging effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 4004-4008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2104.htm

    [7] 刘润, 郭绍曾, 周龙, 等. 大直径钢管桩土塞效应的拟静力判断方法[J]. 地震工程学报, 2017, 39(1): 20-27. doi: 10.3969/j.issn.1000-0844.2017.01.0020

    LIU Run, GUO Shaozeng, ZHOU Long, et al. Quasi-static method to evaluate the soil plug effect on a large-diameter steel pipe pile[J]. China Earthquake Engineering Journal, 2017, 39(1): 20-27. (in Chinese) doi: 10.3969/j.issn.1000-0844.2017.01.0020

    [8]

    LI L C, LIU X, LIU H, et al. Experimental and numerical study on the static lateral performance of monopile and hybrid pile foundation[J]. Ocean Engineering, 2022, 255: 111461. doi: 10.1016/j.oceaneng.2022.111461

    [9] 刘俊伟. 静压开口混凝土管桩施工效应试验及理论研究[D]. 杭州: 浙江大学, 2012.

    LIU Junwei. Experimental and Theoretical Study on Construction Effect of Static Pressure Open Concrete Pipe Pile[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)

    [10] 俞峰, 张忠苗. 混凝土开口管桩竖向承载力的经验参数法设计模型[J]. 土木工程学报, 2011, 44(7): 100-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107016.htm

    YU Feng, ZHANG Zhongmiao. A design framework for evaluating the vertical bearing capacity of open-ended concrete pipe pile from empirical correlations[J]. China Civil Engineering Journal, 2011, 44(7): 100-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107016.htm

    [11]

    HAN F, GANJU E S, PREZZI M, et al. Axial resistance of open-ended pipe pile driven in gravelly sand[J]. Géotechnique, 2020, 70(2): 138-152. doi: 10.1680/jgeot.18.P.117

    [12] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于透明土的管桩贯入特性模型试验研究[J]. 岩土工程学报, 2014, 36(8): 1564-1568. doi: 10.11779/CJGE201408025

    CAO Zhaohu, KONG Gangqiang, LIU Hanlong, et al. Model tests on pipe pile penetration by using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1564-1568. (in Chinese) doi: 10.11779/CJGE201408025

    [13]

    KIKUCHI Y, SATO T, MIZUTANI T, et al. Plugging mechanism of open‐ended piles[J]. Advances in Computed Tomography for Geomaterials, 2010: 406-413.

    [14] 周健, 陈小亮, 周凯敏, 等. 静压开口管桩沉桩过程模型试验及数值模拟[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3839-3846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2057.htm

    ZHOU Jian, CHEN Xiaoliang, ZHOU Kaimin, et al. Model test and numerical simulation of driving process of open-ended jacked pipe piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3839-3846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2057.htm

    [15]

    LI L C, WU W B, LIU H, et al. DEM analysis of the plugging effect of open-ended pile during the installation process[J]. Ocean Engineering, 2021, 220: 108375. doi: 10.1016/j.oceaneng.2020.108375

    [16]

    LI L C, ZHENG M Y, LIU X, et al. Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation[J]. Computers and Geotechnics, 2022, 144: 104635. doi: 10.1016/j.compgeo.2022.104635

    [17]

    Itasca Consulting Group, Inc. PFC2D User's Manual, Version 5.0. 64[R]. Miuneapoils: Itasca Consulting, Group, 2014.

    [18] 刘清秉, 项伟, BMLEHANE, 等. 颗粒形状对砂土抗剪强度及桩端阻力影响机制试验研究[J]. 岩石力学与工程学报, 2011, 30(2): 400-410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102026.htm

    LIU Qingbing, XIANG Wei, LEHANE B M, et al. Experimental study of effect of particle shapes on shear strength of sand and tip resistance of driven piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 400-410. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102026.htm

    [19] 蒋明镜, 肖俞, 陈双林, 等. 砂土中单桩竖向抗压承载机制的离散元分析[J]. 岩土力学, 2010, 31(增刊2): 366-372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2066.htm

    JIANG Mingjing, XIAO Yu, CHEN Shuanglin, et al. Discrete element analysis of bearing mechanism of single pile in sand under vertical load[J]. Rock and Soil Mechanics, 2010, 31(S2): 366-372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2066.htm

    [20]

    ZHANG Z T, WANG Y H. Three-dimensional DEM simulations of monotonic jacking in sand[J]. Granul Matter. 2015, 17: 359-376. doi: 10.1007/s10035-015-0562-4

    [21]

    CIANTIA M, BOSCHI K, SHIRE T, et al. Numerical techniques for fast generation of large discrete-element models[J]. Engineering and Computational Mechanics, 2018, 171(4): 147-161.

    [22] 郦建俊, 黄茂松, 王卫东, 等. 开挖条件下抗拔桩承载力的离心模型试验[J]. 岩土工程学报, 2010, 32(3): 388-396. http://www.cgejournal.com/cn/article/id/12408

    LI Jianjun, HUANG Maosong, WANG Weidong, et al. Centrifugal model tests on bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 388-396. (in Chinese) http://www.cgejournal.com/cn/article/id/12408

    [23] 杨济铭, 张小勇, 张福友, 等. 砂土中桩-土-承台协同作用下桩基承载特性细观研究[J]. 岩土力学, 2020, 41(7): 2271-2282. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007014.htm

    YANG Jiming, ZHANG Xiaoyong, ZHANG Fuyou, et al. Mesoscopic study on bearing characteristics of pile foundation under pile-soil-cap combined interaction in sand[J]. Rock and Soil Mechanics, 2020, 41(7): 2271-2282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007014.htm

    [24]

    LEHANE B M, SCHNEIDER J A, XU X. The UWA-05 method for prediction of axial capacity of driven piles in sand[C]// Frontiers in Offshore Geotechnics: Proceedings of the International Symposium on Frontiers in Offshore Geotechnics. London, 2015.

    [25]

    XU X T, SCHNEIDER J A, LEHANE B M. Cone penetration test (CPT) methods for end-bearing assessment of open- and closed-ended driven piles in siliceous sand[J]. Canadian Geotechnical Journal, 2008, 45(8): 1130-1141. doi: 10.1139/T08-035

    [26]

    LIU J W, DUAN N, CUI L, et al. DEM investigation of installation responses of jacked open-ended piles[J]. Acta Geotechnica, 2019, 14(6): 1805-1819. doi: 10.1007/s11440-019-00817-7

    [27]

    PAIK K, SALGADO R. Determination of bearing capacity of open-ended piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1): 46-57. doi: 10.1061/(ASCE)1090-0241(2003)129:1(46)

    [28]

    FELLENIUS B H. The response of a "plug" in an open-toe pile[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2015, 46(2): 82-86.

    [29] 童立元, 李洪江, 刘松玉, 等. 基于静力触探试验的基坑开挖卸荷单桩水平承载力损失预测研究[J]. 岩土工程学报, 2019, 41(3): 501-508. doi: 10.11779/CJGE201903012

    TONG Liyuan, LI Hongjiang, LIU Songyu, et al. Prediction of lateral capacity losses of a single pile adjacent to excavation of foundation pits based on CPT tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 501-508. (in Chinese) doi: 10.11779/CJGE201903012

    [30] 俞峰, 杨峻. 砂土中钢管桩承载力的静力触探设计方法[J]. 岩土工程学报, 2011, 33(增刊2): 349-354. http://www.cgejournal.com/cn/article/id/14379

    YU Feng, YANG Jun. Design methods for bearing capacity of steel pipe piles driven in sand by means of cone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 349-354. (in Chinese) http://www.cgejournal.com/cn/article/id/14379

    [31]

    YU F, YANG J. Base capacity of open-ended steel pipe piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(9): 1116-1128.

    [32]

    LEHANE B M, GAVIN K G. Base resistance of jacked pipe piles in sand[J]. Journal Geotechnical Geoenvironmental Engineering, 2001, 127(6): 473-480.

图(15)  /  表(2)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  65
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 网络出版日期:  2023-11-29
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回