DEM analysis of installation and bearing process of open-ended piles considering plugging effects
-
摘要: 开口管桩贯入过程中会产生复杂的土塞效应,显著影响管桩的沉桩过程与承载特性。考虑到试验方法成本高、周期长、且难以直观反映土塞与管桩的相互作用特性,基于离散元方法开展砂土地基中静压开口管桩沉桩与承载全过程模拟分析。基于室内试验数据对离散元模型参数进行标定,并采用周期性单元复制法生成均质且应力沿深度线性分布的地基模型。基于土体变形特征,揭示管桩中土塞的主动拱与被动拱分布特征。进一步地,结合土塞参数的演化规律,得出土塞增长率(IFR)对土塞状态变化更为敏感,且土塞阻力的发挥趋势与IFR值变化趋势有较高的相似性。基于管桩静载试验模拟,得出静载下开口管桩呈完全闭塞状态,土塞的荷载-位移响应呈弹塑性,并最终建立考虑CPT锥尖阻力、土塞效应、管桩尺寸的静压开口管桩桩端阻力经验计算公式。本文研究成果揭示了土塞的形成演化过程与承载机制,对于考虑土塞效应的开口管桩沉桩阻力预测与承载力计算具有一定参考价值。Abstract: The penetration process of open-ended piles will cause complex plugging effects, which further influence the installation and bearing characteristics of piles. Considering the high cost, long period and limitations in reflecting the interaction between piles and soil plugs of the traditional experimental approach, the jacking installation and subsequent loading process of open-ended piles in sand are simulated based on the discrete element method (DEM). The periodic cell replication method is used to generate a homogeneous foundation sample with linear stress distribution. Based on the analysis of the soil deformation characteristics, the characteristics of the active arch and passive arch distribution of the soil plugs are revealed. Based on the analysis of the evolution of soil plugging parameters and plug bearing characteristics, it is found that the incremental filling ratio (IFR) is more sensitive to the plug behavior, and the development of plug resistance shows good consistency with the trend of the IFR value. Also, the open-ended piles are in the fully plugged mode under the static loads, and the load-displacement response of soil plugs is elastic-plastic. Finally, the method for calculating the end bearing capacity of open-ended jacked piles is established by considering the CPT cone resistances, plugging effects and pile size effects. The above results reveal the evolution process and bearing mechanism of soil plugs and can provide reference value for the prediction of installation resistance and calculation of bearing capacity of open-ended piles considering soil plugging effects.
-
Keywords:
- open-ended pile /
- plugging effect /
- discrete element method /
- end bearing capacity
-
-
表 1 UWA硅质砂及其等效离散砂样参数
Table 1 Properties of UWA superfine sand and its DEM analogue
参数 Gs 颗粒尺寸/mm Cu Cc /(°) d10 d50 d60 试验值 2.67 0.12 0.18 0.20 1.67 1.020 33 模拟值 2.67 1.80 2.70 3.00 1.67 0.975 32 注:为极限状态摩擦角,Cu,Cc分别为不均匀系数和曲率系数。 表 2 离散元模型参数
Table 2 Parameters for discrete model
地基土样 墙 桩 kn/(N·m-1) ks/(N·m-1) μ μr βn βs Md kn/(N·m-1) ks/(N·m-1) μw kn/(N·m-1) ks/(N·m-1) μp 1×108 2×107 0.5 0.1 0.45 0.1 0.1 3 1×1010 1×1010 0 1.5×109 1.5×109 0.5 注:kn,ks分别为法向刚度和剪切刚度;μ为摩擦系数;为阻尼比;μr为滚动摩擦系数;βn为法向极限阻尼比;βs为剪切极限阻尼比;Md为黏壶模式;μw为墙摩擦系数;μp为桩摩擦系数。 -
[1] 陆昭球, 高倚山, 宋铭栋. 关于开口钢管桩工作性状的几点认识[J]. 岩土工程学报, 1999, 21(1): 111-114. doi: 10.3321/j.issn:1000-4548.1999.01.024 LU Zhaoqiu, GAO Yishan, SONG Mingdong. Some knowledge about working performance open-end steel pipe pile[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 111-114. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.01.024
[2] 李立辰. 考虑土塞效应的管桩与复合单桩基础承载特性试验及数值研究[D]. 武汉: 中国地质大学(武汉), 2021. LI Lichen. Experimental and Numerical Research on the Bearing Characteristics of Open-ended Pile and Hybrid Pile Foundation Considering Plugging Effect[D]. Wuhan: China University of Geosciences (Wuhan), 2021. (in Chinese)
[3] 张忠苗, 刘俊伟, 俞峰, 等. 静压预应力混凝土管桩土塞效应试验研究[J]. 岩土力学, 2011, 32(8): 2274-2280. doi: 10.3969/j.issn.1000-7598.2011.08.005 ZHANG Zhongmiao, LIU Junwei, YU Feng, et al. Research on plugging effect of jacked prestressed concrete pipe pile[J]. Rock and Soil Mechanics, 2011, 32(8): 2274-2280. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.08.005
[4] 吴文兵, 蒋国盛, 王奎华, 等. 土塞效应对管桩纵向动力特性的影响研究[J]. 岩土工程学报, 2014, 36(6): 1129-1141. doi: 10.11779/CJGE201406019 WU Wenbing, JIANG Guosheng, WANG Kuihua, et al. Influence of soil plug effect on vertical dynamic response of pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1129-1141. (in Chinese) doi: 10.11779/CJGE201406019
[5] RANDOLPH M F, LEONG E C, HOULSBY G T. One-dimensional analysis of soil plugs in pipe piles[J]. Géotechnique, 1991, 41(4): 587-598. doi: 10.1680/geot.1991.41.4.587
[6] 郑俊杰, 聂重军, 鲁燕儿. 基于土塞效应的柱形孔扩张问题解析解[J]. 岩石力学与工程学报, 2006, 25(增刊2): 4004-4008. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2104.htm ZHENG Junjie, NIE Chongjun, LU Yaner. Analytical solutions of cylindrical cavity expansion problems considering plugging effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 4004-4008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2104.htm
[7] 刘润, 郭绍曾, 周龙, 等. 大直径钢管桩土塞效应的拟静力判断方法[J]. 地震工程学报, 2017, 39(1): 20-27. doi: 10.3969/j.issn.1000-0844.2017.01.0020 LIU Run, GUO Shaozeng, ZHOU Long, et al. Quasi-static method to evaluate the soil plug effect on a large-diameter steel pipe pile[J]. China Earthquake Engineering Journal, 2017, 39(1): 20-27. (in Chinese) doi: 10.3969/j.issn.1000-0844.2017.01.0020
[8] LI L C, LIU X, LIU H, et al. Experimental and numerical study on the static lateral performance of monopile and hybrid pile foundation[J]. Ocean Engineering, 2022, 255: 111461. doi: 10.1016/j.oceaneng.2022.111461
[9] 刘俊伟. 静压开口混凝土管桩施工效应试验及理论研究[D]. 杭州: 浙江大学, 2012. LIU Junwei. Experimental and Theoretical Study on Construction Effect of Static Pressure Open Concrete Pipe Pile[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[10] 俞峰, 张忠苗. 混凝土开口管桩竖向承载力的经验参数法设计模型[J]. 土木工程学报, 2011, 44(7): 100-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107016.htm YU Feng, ZHANG Zhongmiao. A design framework for evaluating the vertical bearing capacity of open-ended concrete pipe pile from empirical correlations[J]. China Civil Engineering Journal, 2011, 44(7): 100-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107016.htm
[11] HAN F, GANJU E S, PREZZI M, et al. Axial resistance of open-ended pipe pile driven in gravelly sand[J]. Géotechnique, 2020, 70(2): 138-152. doi: 10.1680/jgeot.18.P.117
[12] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于透明土的管桩贯入特性模型试验研究[J]. 岩土工程学报, 2014, 36(8): 1564-1568. doi: 10.11779/CJGE201408025 CAO Zhaohu, KONG Gangqiang, LIU Hanlong, et al. Model tests on pipe pile penetration by using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1564-1568. (in Chinese) doi: 10.11779/CJGE201408025
[13] KIKUCHI Y, SATO T, MIZUTANI T, et al. Plugging mechanism of open‐ended piles[J]. Advances in Computed Tomography for Geomaterials, 2010: 406-413.
[14] 周健, 陈小亮, 周凯敏, 等. 静压开口管桩沉桩过程模型试验及数值模拟[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3839-3846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2057.htm ZHOU Jian, CHEN Xiaoliang, ZHOU Kaimin, et al. Model test and numerical simulation of driving process of open-ended jacked pipe piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3839-3846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2057.htm
[15] LI L C, WU W B, LIU H, et al. DEM analysis of the plugging effect of open-ended pile during the installation process[J]. Ocean Engineering, 2021, 220: 108375. doi: 10.1016/j.oceaneng.2020.108375
[16] LI L C, ZHENG M Y, LIU X, et al. Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation[J]. Computers and Geotechnics, 2022, 144: 104635. doi: 10.1016/j.compgeo.2022.104635
[17] Itasca Consulting Group, Inc. PFC2D User's Manual, Version 5.0. 64[R]. Miuneapoils: Itasca Consulting, Group, 2014.
[18] 刘清秉, 项伟, BMLEHANE, 等. 颗粒形状对砂土抗剪强度及桩端阻力影响机制试验研究[J]. 岩石力学与工程学报, 2011, 30(2): 400-410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102026.htm LIU Qingbing, XIANG Wei, LEHANE B M, et al. Experimental study of effect of particle shapes on shear strength of sand and tip resistance of driven piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 400-410. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102026.htm
[19] 蒋明镜, 肖俞, 陈双林, 等. 砂土中单桩竖向抗压承载机制的离散元分析[J]. 岩土力学, 2010, 31(增刊2): 366-372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2066.htm JIANG Mingjing, XIAO Yu, CHEN Shuanglin, et al. Discrete element analysis of bearing mechanism of single pile in sand under vertical load[J]. Rock and Soil Mechanics, 2010, 31(S2): 366-372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2066.htm
[20] ZHANG Z T, WANG Y H. Three-dimensional DEM simulations of monotonic jacking in sand[J]. Granul Matter. 2015, 17: 359-376. doi: 10.1007/s10035-015-0562-4
[21] CIANTIA M, BOSCHI K, SHIRE T, et al. Numerical techniques for fast generation of large discrete-element models[J]. Engineering and Computational Mechanics, 2018, 171(4): 147-161.
[22] 郦建俊, 黄茂松, 王卫东, 等. 开挖条件下抗拔桩承载力的离心模型试验[J]. 岩土工程学报, 2010, 32(3): 388-396. http://www.cgejournal.com/cn/article/id/12408 LI Jianjun, HUANG Maosong, WANG Weidong, et al. Centrifugal model tests on bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 388-396. (in Chinese) http://www.cgejournal.com/cn/article/id/12408
[23] 杨济铭, 张小勇, 张福友, 等. 砂土中桩-土-承台协同作用下桩基承载特性细观研究[J]. 岩土力学, 2020, 41(7): 2271-2282. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007014.htm YANG Jiming, ZHANG Xiaoyong, ZHANG Fuyou, et al. Mesoscopic study on bearing characteristics of pile foundation under pile-soil-cap combined interaction in sand[J]. Rock and Soil Mechanics, 2020, 41(7): 2271-2282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007014.htm
[24] LEHANE B M, SCHNEIDER J A, XU X. The UWA-05 method for prediction of axial capacity of driven piles in sand[C]// Frontiers in Offshore Geotechnics: Proceedings of the International Symposium on Frontiers in Offshore Geotechnics. London, 2015.
[25] XU X T, SCHNEIDER J A, LEHANE B M. Cone penetration test (CPT) methods for end-bearing assessment of open- and closed-ended driven piles in siliceous sand[J]. Canadian Geotechnical Journal, 2008, 45(8): 1130-1141. doi: 10.1139/T08-035
[26] LIU J W, DUAN N, CUI L, et al. DEM investigation of installation responses of jacked open-ended piles[J]. Acta Geotechnica, 2019, 14(6): 1805-1819. doi: 10.1007/s11440-019-00817-7
[27] PAIK K, SALGADO R. Determination of bearing capacity of open-ended piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1): 46-57. doi: 10.1061/(ASCE)1090-0241(2003)129:1(46)
[28] FELLENIUS B H. The response of a "plug" in an open-toe pile[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2015, 46(2): 82-86.
[29] 童立元, 李洪江, 刘松玉, 等. 基于静力触探试验的基坑开挖卸荷单桩水平承载力损失预测研究[J]. 岩土工程学报, 2019, 41(3): 501-508. doi: 10.11779/CJGE201903012 TONG Liyuan, LI Hongjiang, LIU Songyu, et al. Prediction of lateral capacity losses of a single pile adjacent to excavation of foundation pits based on CPT tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 501-508. (in Chinese) doi: 10.11779/CJGE201903012
[30] 俞峰, 杨峻. 砂土中钢管桩承载力的静力触探设计方法[J]. 岩土工程学报, 2011, 33(增刊2): 349-354. http://www.cgejournal.com/cn/article/id/14379 YU Feng, YANG Jun. Design methods for bearing capacity of steel pipe piles driven in sand by means of cone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 349-354. (in Chinese) http://www.cgejournal.com/cn/article/id/14379
[31] YU F, YANG J. Base capacity of open-ended steel pipe piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(9): 1116-1128.
[32] LEHANE B M, GAVIN K G. Base resistance of jacked pipe piles in sand[J]. Journal Geotechnical Geoenvironmental Engineering, 2001, 127(6): 473-480.
-
其他相关附件