• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析

陈龙伟, 刘昊儒, 任叶飞, 吴晓阳, 袁晓铭

陈龙伟, 刘昊儒, 任叶飞, 吴晓阳, 袁晓铭. 2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析[J]. 岩土工程学报, 2024, 46(7): 1541-1548. DOI: 10.11779/CJGE20230333
引用本文: 陈龙伟, 刘昊儒, 任叶飞, 吴晓阳, 袁晓铭. 2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析[J]. 岩土工程学报, 2024, 46(7): 1541-1548. DOI: 10.11779/CJGE20230333
CHEN Longwei, LIU Haoru, REN Yefei, WU Xiaoyang, YUAN Xiaoming. In-situ investigation of site liquefaction and liquefaction-induced damages triggered by two strong Türkiye earthquakes on Feb. 6th, 2023[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1541-1548. DOI: 10.11779/CJGE20230333
Citation: CHEN Longwei, LIU Haoru, REN Yefei, WU Xiaoyang, YUAN Xiaoming. In-situ investigation of site liquefaction and liquefaction-induced damages triggered by two strong Türkiye earthquakes on Feb. 6th, 2023[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1541-1548. DOI: 10.11779/CJGE20230333

2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析  English Version

基金项目: 

中国地震局工程力学研究所基本科研业务费专项项目 2020B01

详细信息
    作者简介:

    陈龙伟(1983—),男,研究员,博士生导师,主要从事岩土地震工程、土动力学等方面的研究。E-mail:chenlw@iem.ac.cn

  • 中图分类号: TU435

In-situ investigation of site liquefaction and liquefaction-induced damages triggered by two strong Türkiye earthquakes on Feb. 6th, 2023

  • 摘要: 震害考察是地震工程研究的支柱之一。2023年2月6日土耳其中南部发生了两次震级分别为Mw7.8,Mw7.5的罕见双强震,造成巨大的人员伤亡和财产损失。通过实地震害考察,对双强震触发的场地液化震害及其特征进行调查分析,分析结果显示:①本次地震液化具有现象显著、液化面积大、涉及范围广、液化灾害严重等特征;②场地液化震害形式多样,表现为喷砂、地面侧移、地基沉降以及地基丧失承载力等典型液化震害形式,且造成大量建筑物严重破坏;③在两个调查地区发现了液化引发的地面侧移,侧移量从几米至十几米,并直接导致建筑物严重破坏甚至毁坏;④在格尔巴舍(Golbasi)城区发现数十栋建筑物因地基液化丧失承载力而出现严重倾斜(不均匀沉降)、沉降,沉降量从几十厘米到1~2米、倾斜角度从几度到十几度不等,现场测量建筑最大倾斜角度达到20°。通过对土耳其地震场地液化的宏观现象调查分析,认识本次地震触发的液化特征及其震害启示,以期为中国地基液化减灾技术研究提供参考。
    Abstract: The post-earthquake scientific investigation is one of the essentials for earthquake engineering. On the 6th of February, 2023, two deadly earthquakes, whose magnitudes were Mw7.8 and Mw7.5, respectively, shook Southern-Central Turkey, caused significantly large casualties and tremendous economy loss. Through the in-situ site investigation, the liquefaction phenomena and related damages triggered by the two strong earthquakes were surveyed and preliminarily analyzed. The analytical results indicate: (1) The liquefactions induced by the earthquakes were significant, and distributed in a wide area, and caused severe damages to buildings; (2) the consequences of site liquefaction were observed as sand boils, lateral spread, ground subsidence and loss of site bearing capacity, which yielded damages to the residence buildings in great extent. (3) The liquefaction-induced lateral spread was observed in two investigation zones, and its distance ranged from meters to tens of meters, resulting in damage or demolishing of buildings. (4) In an investigation area of Golbasi City, tens of buildings were found subsided and tilting due to liquefaction-induced loss of soil bearing capacity. The subsidence of buildings ranged from tens of centimeters to 1~2 meters, and the tilting angles varied from several degrees to tens of degrees with the measured maximum angle of 20 degrees in tilt. Through the field survey of liquefaction triggered by the shocks and the analysis of liquefaction-induced consequences, the characteristics of liquefaction and the lessons learned are presented, and the findings are expected to be beneficial for liquefaction hazard mitigation in China.
  • 致谢: 感谢中国地震局“土耳其7.8级地震科学考察”领导小组和办公室、中国地震局工程力学研究所领导及科考队队员、中国地震局土耳其7.8级地震科学考察·场地观测组(二组)全体队员、土耳其灾害和应急管理局AFAD (Disaster and Emergency Authority of Türkiye)、土耳其地震灾区友好善良的民众等为现场科考工作提供的大力支持和帮助。
  • 图  1   本次地震科考调查的液化点(红点)以及报告[7]调查标记的液化点(紫色)

    Figure  1.   Map of liquefaction investigation sites, including the observed (red points) and the reported[7] (purple points)

    图  2   现场调查发现的液化喷砂迹象

    Figure  2.   Sand ejecta observed during site investigation

    图  3   Hatay机场附近调查发现的液化喷水冒砂现象

    Figure  3.   Liquefaction observed close to Hatay Airport

    图  4   液化侧移产生的地面张拉裂缝

    Figure  4.   Ground cracks caused by lateral spread of liquefaction observed

    图  5   液化侧移导致的建筑物破坏

    Figure  5.   Structural damages caused by lateral spread of liquefaction

    图  6   地基液化导致地基丧失承载力,引起建筑沉降、倾斜(不均匀沉降)等震害现象的示意图

    Figure  6.   Sketch of bearing capacity loss of site caused by liquefaction triggerring tilting (or differential settlement) and settlement of buildings

    图  7   地基液化引起建筑倾斜(不均匀沉降)(调查点#5)

    Figure  7.   Tilting (differential settlement) of buildings induced by site liquefaction at investigation site No. 5

    图  8   地基液化引起建筑物沉降(调查点#2)

    Figure  8.   Settlements of buildings induced by soil liquefaction at investigation site No. 2

    图  9   地基液化引起建筑物严重沉降(调查点#5)

    Figure  9.   Severe settlements of buildings induced by soil liquefaction at investigation site No. 5

    图  10   场地地基液化引起建筑倾斜角度20°(调查点#5)

    Figure  10.   Tilting of a building with 20 degrees induced by soil liquefaction at investigation site No. 5

    图  11   场地液化导致建筑物严重倾斜、沉降破坏

    Figure  11.   Severe tilting and settlements of buildings caused by site liquefaction

    图  12   液化导致地面沉降

    Figure  12.   Ground subsidences caused by liquefaction

  • [1] 刘恢先. 唐山大地震震害[M]. 北京: 地震出版社, 1989.

    LIU Huixian. Earthquake Damage of the Great Tangshan Earthquake [M]. Beijing: Seismic Press, 1989. (in Chinese)

    [2] 中国科学院工程力学研究所. 海城地震震害[M]. 北京: 地震出版社, 1979.

    Institute of Mechanics, Chinese Academy of Sciences. Damage of Haicheng Earthquake[M]. Beijing: Seismological Press, 1979. (in Chinese)

    [3] 袁晓铭, 曹振中, 孙锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 28(6): 1288-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906029.htm

    YUAN Xiaoming, CAO Zhenzhong, SUN Rui, et al. Preliminary research on liquefaction characteristics of Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1288-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906029.htm

    [4]

    SEED R B, CETIN K O, MOSS R E S, et al. Recent advances in soil liquefaction engineering: a unified and consistent framework[C]// Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA, 2003.

    [5]

    NASEM (National Academiesof Science, Engineering and Medicine). State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences[M]. Washington D C: National Academies Press, 2021.

    [6] 袁晓铭, 费扬, 陈龙伟, 等. 含剧烈地震动作用不同埋深砂土液化判别统一公式[J]. 岩石力学与工程学报, 2021, 40(10): 2101-2112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110014.htm

    YUAN Xiaoming, FEI Yang, CHEN Longwei, et al. An unified formula for predicting sand liquefaction in different buried depths under severe seismic ground motion[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2101-2112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110014.htm

    [7]

    ÇETIN K Ö, ILGAC M, CAN G, et al. Preliminary reconnaissance report on February 6, 2023, Pazarcik Mw=7.7 and Elbistan Mw=7.6, Kahramanmaras, Turkiye earthquakes[R]. Ankara: Middle East Technical University, 2023.

    [8]

    TAFTSOGLOU M, VALKANIOTIS S, KARANTANELLIS E, et al. Preliminary mapping of liquefaction phenomena triggered by the February 6, 2023, M7.7 earthquake, Turkiye/Syria, based on remote sensing data[R/OL]. https://doi.org/10.5281/zenodo.7668401.

    [9]

    YOUD T L. Liquefaction Mechanisms and Induced Ground Failure[M]. Chapter in International Handbook of Earthquake and Engineering Seismology. London: Academic Press, 2003.

    [10]

    CHEN L, YUAN X, CAO Z, et al. Liquefied marophenomena in the great Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 219-229. doi: 10.1007/s11803-009-9033-4

    [11] 曹振中, 徐学燕, YOUD T L, 等. 汶川8.0级地震板桥学校液化震害剖析[J]. 岩土工程学报, 2011, 33 (增刊1): 324-329. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1062.htm

    CAO Zhenzhong, XU Xueyan, YOUD T L, et al. Case study on damage of Banqiao School due to liquefaction following Wenchuan Ms 8.0 earthquake[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 324-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1062.htm

    [12] 曹振中, 袁晓铭, 陈龙伟, 等. 汶川大地震液化宏观现象概述[J]. 岩土工程学报, 2010, 32(4): 645-650. http://cge.nhri.cn/cn/article/id/12445

    CAO Zhenzhong, YUAN Xiaoming, CHEN Longwei, et al. Summary of liquefaction macrophenomena in Wenchuan earthquake[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 645-650. (in Chinese) http://cge.nhri.cn/cn/article/id/12445

    [13]

    CHEN L, YUAN X, CAO Z, et al. Characteristics and triggering conditions for naturally deposited gravelly soils that liquefied following the 2008 Wenchuan Mw7.9 earthquake, China[J]. Earthquake Spectra, 2018, 34(3): 1091-1111. doi: 10.1193/032017EQS050M

    [14]

    SEED H B, IDRISS I M. An analysis of soil liquefaction in the Niigata earthquake[R]. Berkeley: University of California, 1966.

    [15]

    YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)

    [16]

    LI C C, YUAN X M. A new method for mapping liquefaction-induced lateral spread level[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 206-223. doi: 10.1016/j.soildyn.2017.05.030

    [17]

    BRAY J D, DASHTI S. Liquefaction-induced building movements[J]. Bulletin of Earthquake Engineering, 2014, 12(3): 1129-1156.

    [18]

    ISHIHARA K, YOSHIMINE M. Evaluation of settlements in sand deposits following liquefaction during earthquakes[J]. Soils and Foundations, 1992, 32(1): 173-188.

    [19] 孟上九, 刘汉龙, 袁晓铭, 等. 可液化地基上建筑物不均匀震陷机制的振动台试验研究[J]. 岩石力学与工程学报, 2005, 24(11): 1978-1985. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200511030.htm

    MENG Shangjiu, LIU Hanlong, YUAN Xiaoming, et al. Experimental study on the mechanism of earthquake-induced differential settlement of building on liquescent subsoil by shaking table[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1978-1985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200511030.htm

  • 期刊类型引用(25)

    1. 蒙贤忠,夏宇磬,周传波,冯庆高,蒋楠,杨玉民. 土–岩地层水平孔爆破诱发振动传播特征及预测. 岩石力学与工程学报. 2025(03): 737-751 . 百度学术
    2. 乔雄,刘文高,倪伟淋,张伟,杨鑫,黄锦聪,刘锦龙. 基于爆破荷载等效施加方法的振动波形预测与古建筑安全评估. 地震工程学报. 2024(01): 16-25 . 百度学术
    3. 王小飞,胡少斌,王恩元,黄俊,颜正勇. 干冰粉热冲击破岩基坑围护结构振动安全研究. 中国公路学报. 2024(03): 371-381 . 百度学术
    4. 伍福寿,张学民,韩淼,陈进,胡涛,周贤舜,王树英,朱凯. 近接既有隧道爆破激发地震波成分构成及特性研究. 中南大学学报(自然科学版). 2024(04): 1406-1417 . 百度学术
    5. 孙丰森,王海亮,张勇,张雨晨. 埋地输油管道对胶州湾第二海底隧道爆破施工的动力响应. 山东科技大学学报(自然科学版). 2024(03): 75-84 . 百度学术
    6. 李坚,赵岩,周文磊,王海龙. 掏槽爆破作用下振动波形预测及影响分区确定. 工程爆破. 2024(04): 122-130 . 百度学术
    7. 何理,殷琳,钟冬望,张鑫玥,赵永明,熊海涛,陈莎莎,NJAMBA Bruno. 爆破振动强度、波形与频谱研究综述:预测及主动控制. 爆破. 2024(03): 189-204+262 . 百度学术
    8. 望远福,李云赫,赵岩,范杰林. 隧道爆破振动中掏槽段的波形预测方法. 中国测试. 2024(10): 150-156 . 百度学术
    9. 骆峻伟,胡少斌,黄俊,王小飞. 隧道干冰粉膨胀破岩绿色施工技术研究. 现代交通技术. 2024(06): 46-49 . 百度学术
    10. 周贤舜,张学民,武朝光,胡涛,陈鑫磊,段亚. 基于低碳减排的隧道水封爆破优化效果研究. 铁道科学与工程学报. 2023(03): 996-1007 . 百度学术
    11. 张雨晨,王海亮,石晨晨,丁新宇,赵军. 隧道爆破下邻近管道动力响应的数值模拟. 工程爆破. 2023(03): 95-105 . 百度学术
    12. 魏海霞,祝杰,杨小林,褚怀保. 高压气体爆破作用下层状岩体的地表振动效应预测方法. 振动与冲击. 2023(20): 1-11 . 百度学术
    13. 赵珂,蒋楠,周传波,姚颖康,朱斌. 爆破地震荷载作用下埋地燃气管道动力响应尺寸效应研究. 振动与冲击. 2022(02): 64-73 . 百度学术
    14. 刘桂勇,刘小鸣,陈士海. 延时时间对地表振动叠加效应的影响. 工程爆破. 2022(01): 63-70 . 百度学术
    15. 刘潇,欧运平,曹鲁鹏,彭伟哲. 羊头山隧道开挖围岩稳定性监测分析. 甘肃科学学报. 2022(04): 137-140+152 . 百度学术
    16. 李新平,张雪屏,刘飞香,郑博闻,罗忆. 群孔齐发爆破岩体振动频谱特性研究. 爆破. 2021(01): 14-20+35 . 百度学术
    17. 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应. 浙江大学学报(工学版). 2021(03): 500-510 . 百度学术
    18. 石伟民,何方,陈士海,揭海荣,李海波. 新建隧道下穿既有铁路结构爆破振动影响分区及减震优化. 华侨大学学报(自然科学版). 2021(06): 764-771 . 百度学术
    19. 刘小鸣,陈士海. 群孔微差爆破的地表振动波形预测及其效应分析. 岩土工程学报. 2020(03): 551-560 . 本站查看
    20. 刘航雨,陈寿根. 深埋软岩紧急救援站爆破安全距离的研究. 四川建筑. 2020(02): 145-146+149 . 百度学术
    21. 陈元利,付玉华,郭丽艳,王庆,张康康. “小构造”复杂岩石条件下掏槽爆破的试验研究. 矿业研究与开发. 2020(06): 23-27 . 百度学术
    22. 关祥宏. 矿山隧道掘进围岩稳定性动态监测研究. 矿冶工程. 2020(03): 34-38 . 百度学术
    23. 陈士海,刘小鸣,张子华,林从谋. 隧道掘进爆破诱发隧道后方开挖段地表振动效应分析. 岩土工程学报. 2020(10): 1800-1806 . 本站查看
    24. 陈经鹏,陈士海. 隧道掘进爆破时掌子面前方开挖段的地表振速预测. 华侨大学学报(自然科学版). 2020(06): 718-726 . 百度学术
    25. Chen Li,Shufeng Liang,Yongchao Wang,Long Li,Dianshu Liu. Attenuation Parameters of Blasting Vibration by Fuzzy Nonlinear Regression Analysis. Journal of Beijing Institute of Technology. 2020(04): 520-525 . 必应学术

    其他类型引用(9)

图(12)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 34
出版历程
  • 收稿日期:  2023-04-17
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回