• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于间接热力学方法的变换应力方法推导

姚仰平, 何冠, 崔文杰

姚仰平, 何冠, 崔文杰. 基于间接热力学方法的变换应力方法推导[J]. 岩土工程学报, 2024, 46(7): 1368-1377. DOI: 10.11779/CJGE20230332
引用本文: 姚仰平, 何冠, 崔文杰. 基于间接热力学方法的变换应力方法推导[J]. 岩土工程学报, 2024, 46(7): 1368-1377. DOI: 10.11779/CJGE20230332
YAO Yangping, HE Guan, CUI Wenjie. Derivation of transformed stress method based on indirect thermodynamic method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1368-1377. DOI: 10.11779/CJGE20230332
Citation: YAO Yangping, HE Guan, CUI Wenjie. Derivation of transformed stress method based on indirect thermodynamic method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1368-1377. DOI: 10.11779/CJGE20230332

基于间接热力学方法的变换应力方法推导  English Version

基金项目: 

国家自然科学基金项目 52238007

国家自然科学基金项目 51979001

详细信息
    作者简介:

    姚仰平(1960—),男,博士,教授,主要从事土体本构理论方面的教学和科研工作。E-mail: yaoyp@buaa.edu.cn

  • 中图分类号: TU43

Derivation of transformed stress method based on indirect thermodynamic method

  • 摘要: 金属等没有剪胀性的连续材料在根据试验结果建立屈服函数后,可以由Drucker公设及其相关联流动法则推论直接唯一地确定出与屈服函数一致的塑性势函数。但大量试验结果与理论分析都表明Drucker公设对于土材料这种有剪胀性的颗粒材料并不适用,所以更具普适性的热力学成了正确描述土材料塑性流动方向的必要条件。然而塑性流动方向无法只由热力学这一描述材料特性的必要条件唯一地确定,因此便出现了先由试验确定屈服面与塑性流动方向再对其进行热力学验证的间接热力学方法。此外,由于土材料在三维应力空间中不同洛德角对应子午面上的应力应变规律并不一致,因此一般会通过三维化方法来描述土材料在三维应力空间中的力学特性。三维化方法会使得不同子午面上的屈服面及塑性流动方向与三轴压缩状态下所建立的本构模型有所不同,导致三维化后的本构模型是否符合热力学原理成为新的问题。所以本文利用间接热力学方法推导了符合热力学原理的三维化方法,并通过构建变换应力空间将其整理为更有实用性的变换应力方法。
    Abstract: The unique plastic potential function consistent with the yield function can be directly determined by the Drucker's postulate and its associated flow law deduction after the yield function is established for the continuous materials without dilatancy, such as metals. However, a large number of test results and theoretical analyses show that the Drucker's postulate is not applicable to soils, which is a type of granular material with dilatancy, then the more universal thermodynamics is selected as a new necessary condition for correctly describing the plastic flow direction of soils. Nevertheless, the plastic flow direction cannot be determined solely by thermodynamics, which is only a necessary condition to describe the properties of materials. Therefore, the indirect thermodynamic method is developed in which the yield surface and the plastic flow direction are firstly determined with tests and then verified by thermodynamics. In addition, since the stress-strain relationships on the meridional planes corresponding to different Lode angles in the three-dimensional stress space of soils are not consistent to each other, the generalized methods are generally used to describe such mechanical characteristics of soils. Meanwhile, the generalized yield surface and plastic flow direction on different meridional planes will be different from those in the constitutive models established under triaxial compression state, so whether the generalized constitutive model conforms to the thermodynamics becomes a new problem. Therefore, the indirect thermodynamic method is used to derive a generalized method conforming to the principles of thermodynamics, which is then organized into a more practical transformed stress method by constructing the transformation stress space.
  • 图  1   耗散应力空间中的塑性流动方向分布范围

    Figure  1.   Distribution ranges of plastic flow direction in dissipative stress space

    图  2   耗散应力空间中的椭圆塑性势面

    Figure  2.   Elliptical plastic potential surface in dissipative stress space

    图  3   水滴形屈服面

    Figure  3.   Drop-shaped yield surfaces

    图  4   水滴形屈服面与椭圆塑性势面

    Figure  4.   Drop-shaped yield surface and elliptical plastic potential surface

    图  5   屈服面与两个应力空间中的塑性势面

    Figure  5.   Plastic potential surfaces in two stress spaces and yield surface

    图  6   π平面上三维化后的屈服线

    Figure  6.   Generalized yield envelope on π plane

    图  7   三轴压缩与三轴伸长应力状态下的屈服面

    Figure  7.   Yield surfaces under triaxial compression and triaxial extension stress states

    图  8   三维化后的屈服面与塑性流动方向

    Figure  8.   Yield surfaces and plastic flow direction after generalization

    图  9   三轴伸长应力状态下不同应力空间中的屈服面与塑性势面

    Figure  9.   Yield surfaces and plastic potential surface in different stress spaces under triaxial extension stress state

    图  10   三轴伸长应力状态下变换应力空间与真实应力空间中的屈服面

    Figure  10.   Yield surfaces in transformed stress space and true stress space under triaxial extension stress state

    图  11   变换应力方法示意图

    Figure  11.   Schematic diagram of transformed stress method

  • [1]

    DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291

    [2]

    ROSCOE K H, SCHOFIELD A N. Mechanical behaviour of an idealized 'wet' clay[C]// Proceedings of the ProcEuropean Conf on Soil Mechanics and Foundation Engineering. Wiesbaden, 1963.

    [3]

    ROSCOE K, BURLAND J. On the Generalized Stress-Strain Behaviour of Wet Clay[M]. Cambridge: Cambridge University Press, 1968.

    [4]

    DAFALIAS Y F. Bounding surface plasticity: Ⅰ mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987. doi: 10.1061/(ASCE)0733-9399(1986)112:9(966)

    [5]

    DAFALIAS Y F, HERRMANN L R. Bounding surface plasticity: Ⅱ application to isotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1263-1291. doi: 10.1061/(ASCE)0733-9399(1986)112:12(1263)

    [6]

    HASHIGUCHI K. Plastic constitutive equations of granular materials[C]// Proceedings of the Proc US-Japan Seminar Continuum Mech Stast Appr Mech Granular Materials, Tokyo, 1978.

    [7]

    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029

    [8]

    YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649

    [9]

    FENG X, YAO Y P, LI R N, et al. Loading–unloading judgement for advanced plastic UH model[J]. Acta Mechanica Sinica, 2020, 36(4): 827-839. doi: 10.1007/s10409-020-00936-5

    [10]

    YAO Y P, QU S, YIN Z Y, et al. SSUH model: a small-strain extension of the unified hardening model[J]. Science China Technological Sciences, 2016, 59(2): 225-240. doi: 10.1007/s11431-015-5914-0

    [11]

    LUO T, CHEN D, YAO Y P, et al. An advanced UH model for unsaturated soils[J]. Acta Geotechnica, 2020, 15(1): 145-164. doi: 10.1007/s11440-019-00882-y

    [12]

    NEDDERMAN R M. Statics and Kinematics of Granular Materials[M]. Cambridge: Cambridge University Press, 1992.

    [13]

    ANDREOTTI B, FORTERRE Y, POULIQUEN O. Granular Media: between Fluid and Solid[M]. Cambridge: Cambridge University Press, 2013.

    [14]

    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 269: 500-527.

    [15]

    CHANG C S, YIN Z Y. Modeling stress-dilatancy for sand under compression and extension loading conditions[J]. Journal of Engineering Mechanics, 2010, 136(6): 777-786. doi: 10.1061/(ASCE)EM.1943-7889.0000116

    [16]

    YIN Z Y, CHANG C S. Stress–dilatancy behavior for sand under loading and unloading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 855-870. doi: 10.1002/nag.1125

    [17]

    WANG L Z, YIN Z Y. Stress dilatancy of natural soft clay under an undrained creep condition[J]. International Journal of Geomechanics, 2015, 15(5): 1-5.

    [18]

    GAO Z W, ZHAO J D, YIN Z Y. Dilatancy relation for overconsolidated clay[J]. International Journal of Geomechanics, 2017, 17(5): 1-20.

    [19]

    RICHMOND O, SPITZIG W. Pressure dependence and dilatancy of plastic flow [J]. Theoretical and applied mechanics, 1980, 377-386.

    [20]

    POOROOSHASB H B, HOLUBEC I, SHERBOURNE A N. Yielding and flow of sand in triaxial compression: part Ⅰ[J]. Canadian Geotechnical Journal, 1966, 3(4): 179-190. doi: 10.1139/t66-023

    [21]

    FRYDMAN S, ZEITLEN J G, ALPAN I. The yielding behavior of particulate media[J]. Canadian Geotechnical Journal, 1973, 10(3): 341-362. doi: 10.1139/t73-031

    [22]

    LADE P V, PRADEL D. Instability and plastic flow of soils: I experimental observations[J]. Journal of Engineering Mechanics, 1990, 116(11): 2532-2550. doi: 10.1061/(ASCE)0733-9399(1990)116:11(2532)

    [23]

    YAO Y P, HE G, LUO T. Study on determining the plastic flow direction of soils with dilatancy[J]. Acta Geotechnica, 2023, 18(5): 2411-2425. doi: 10.1007/s11440-022-01770-8

    [24]

    COLLINS I F, KELLY P A. A thermomechanical analysis of a family of soil models[J]. Géotechnique, 2002, 52(7): 507-518. doi: 10.1680/geot.2002.52.7.507

    [25]

    COLLINS I F. A systematic procedure for constructing critical state models in three dimensions[J]. International Journal of Solids and Structures, 2003, 40(17): 4379-4397. doi: 10.1016/S0020-7683(03)00226-9

    [26]

    ZIEGLER H, WEHRLI C. The derivation of constitutive relations from the free energy and the dissipation function[M]//Advances in Applied Mechanics. Amsterdam: Elsevier, 1987: 183-238.

    [27]

    TINMOUTH H G. A Study of Plasticity Theories and Their Applicability to Soils[D]. Cambridge, East of England, UK: University of Cambridge, 1981.

    [28]

    HOULSBY G. A derivation of the small-strain incremental theory of plasticity from thermodynamics[C]// Proceedings of the Proc IUTAM Conf Deformation and Failure of Granular Materials, Delft, 1982.

    [29]

    HOULSBY G T. Interpretation of dilation as a kinematic constraint[M]//Modern Approaches to Plasticity. Amsterdam: Elsevier, 1993: 19-38.

    [30]

    MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272. doi: 10.1680/geot.1997.47.2.255

    [31]

    CUBRINOVSKI M, ISHIHARA K. Modelling of sand behaviour based on state concept[J]. Soils and Foundations, 1998, 38(3): 115-127. doi: 10.3208/sandf.38.3_115

    [32]

    GAJO A, WOOD M. Severn-Trent sand: a kinematic-hardening constitutive model: the qp formulation[J]. Géotechnique, 1999, 49(5): 595-614. doi: 10.1680/geot.1999.49.5.595

    [33]

    LI J, YIN Z Y, CUI Y J, et al. Work input analysis for soils with double porosity and application to the hydromechanical modeling of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 2017, 54(2): 173-187. doi: 10.1139/cgj-2015-0574

    [34]

    YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035

    [35]

    YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 1-18.

    [36]

    COLLINS I F, HILDER T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(13): 1313-1347. doi: 10.1002/nag.247

    [37]

    YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199

    [38]

    YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123. doi: 10.1061/(ASCE)0733-9399(2007)133:10(1115)

    [39]

    YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685

    [40] 张坤勇, 文德宝, 马奇豪. 椭圆抛物双屈服面弹塑性模型三维各向异性修正及其试验验证[J]. 岩石力学与工程学报, 2013, 32(8): 1692-1700. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308024.htm

    ZHANG Kunyong, WEN Debao, MA Qihao. Three-dimensional anisotropic revision and experimental verification of elliptic parabolic double yield surface elastoplastic model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1692-1700. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308024.htm

    [41]

    ZHOU A N. Modelling hydro-mechanical behavior for unsaturated soils[J]. Japanese Geotechnical Society Special Publication, 2017, 5(2): 79-94. doi: 10.3208/jgssp.v05.019

    [42] 杨杰, 尹振宇, 黄宏伟, 等. 基于扰动状态概念硬化参量的结构性黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 554-561. doi: 10.11779/CJGE201703021

    YANG Jie, YIN Zhenyu, HUANG Hongwei, et al. Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 554-561. (in Chinese) doi: 10.11779/CJGE201703021

    [43]

    HUANG J Q, ZHAO M, DU X L, et al. An elasto-plastic damage model for rocks based on a new nonlinear strength criterion[J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1413-1429. doi: 10.1007/s00603-018-1417-1

    [44]

    ZHANG S, YE G L, WANG J H. Elastoplastic model for overconsolidated clays with focus on volume change under general loading conditions[J]. International Journal of Geomechanics, 2018, 18(3): 1-14.

    [45] 万征, 孟达. 基于t准则的各向异性强度准则及变换应力法[J]. 力学学报, 2020, 52(5): 1519-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005029.htm

    WAN Zheng, MENG Da. Anisotropic strength criterion based on t criterion and the transformation stress method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1519-1537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005029.htm

    [46]

    FANG J J, FENG Y X. Elastoplastic model and three-dimensional method for unsaturated soils[J]. Shock and Vibration, 2020(3): 8592628.

    [47]

    WANG Z N, WANG G. A closest point projection method for stress integration of 3D sand models generalised by transformed stress method[J]. Geomechanics and Geoengineering, 2024, 19(1): 27-39. doi: 10.1080/17486025.2022.2153933

图(11)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  68
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 网络出版日期:  2023-11-21
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回