• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑刀盘推力的泥水盾构隧道开挖面平衡机理研究及应用

段丽敏, 王建, 侯丽平, 鲁洋, 闵凡路, 毛子铭

段丽敏, 王建, 侯丽平, 鲁洋, 闵凡路, 毛子铭. 考虑刀盘推力的泥水盾构隧道开挖面平衡机理研究及应用[J]. 岩土工程学报, 2024, 46(7): 1556-1562. DOI: 10.11779/CJGE20230324
引用本文: 段丽敏, 王建, 侯丽平, 鲁洋, 闵凡路, 毛子铭. 考虑刀盘推力的泥水盾构隧道开挖面平衡机理研究及应用[J]. 岩土工程学报, 2024, 46(7): 1556-1562. DOI: 10.11779/CJGE20230324
DUAN Limin, WANG Jian, HOU Liping, LU Yang, MIN Fanlu, MAO Ziming. Research and application of balance mechanism of excavation surface of slurry shield tunnels considering cutterhead thrust[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1556-1562. DOI: 10.11779/CJGE20230324
Citation: DUAN Limin, WANG Jian, HOU Liping, LU Yang, MIN Fanlu, MAO Ziming. Research and application of balance mechanism of excavation surface of slurry shield tunnels considering cutterhead thrust[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1556-1562. DOI: 10.11779/CJGE20230324

考虑刀盘推力的泥水盾构隧道开挖面平衡机理研究及应用  English Version

基金项目: 

国家自然科学基金项目 52279099

国家自然科学基金项目 52078189

详细信息
    作者简介:

    段丽敏(1994—),女,博士研究生,从事水工结构数模及盾构隧道工程研究。E-mail: duanlm1994@outlook.com

    通讯作者:

    王建, E-mail: wang_jian@hhu.edu.cn

  • 中图分类号: TU43;U455.43

Research and application of balance mechanism of excavation surface of slurry shield tunnels considering cutterhead thrust

  • 摘要: 现有泥水盾构隧道开挖面平衡机理中,开挖面的支护多认为全部由泥浆压力提供,刀盘推力在支护中的作用少有提及。针对穿沁泥水盾构隧洞工程存在的开挖面支护具体问题,结合开挖面支护主控参数分析,揭示了考虑刀盘推力的泥水盾构隧道开挖面平衡机理,给出了刀盘推力具体表达式。运用所揭示的平衡机理,结合提出的一种盾壳外侧摩阻力估计方法,对该工程的3个重点穿越段进行了开挖面支护力计算和稳定分析。研究表明:3个重点穿越段的掘进中,刀盘推力分别占开挖面支护力的21%,24%,11%;同时考虑泥浆压力和刀盘推力的开挖面支护力,与仅考虑泥浆压力相比,在开挖面前方的轴向水土合力存在区间内占比分别由0,0和78%分别提高至78%,32%和88%,表明刀盘推力在开挖面支护中发挥了重要作用。
    Abstract: In the existing balance mechanism of the excavation surface of slurry shield tunnels, the support of the excavation surface is mostly considered to be provided by mud pressure, and the role of cutterhead thrust in the support is rarely mentioned. In response to the specific problem of excavation surface support in the Chuanqin slurry shield tunnel project, based on the analysis of the main control parameters of excavation surface support, the balance mechanism of the excavation surface of the slurry shield tunnel considering the cutterhead thrust is revealed, and a specific expression for the cutterhead thrust is proposed. Using the revealed equilibrium mechanism and the proposed method for estimating the external frictional resistance of the shield shell, the calculation of excavation support force and the stability analysis are conducted for the three key crossing sections of the project. The research shows that in the excavation of the three key crossing sections, the cutterhead thrust accounts for 21%, 24% and 11% of the excavation face support force, respectively. Considering both the mud pressure and the cutterhead thrust, the proportion of the combined axial water and soil forces in the presence range in front of the excavation face increases from 0, 0 and 78% to 78%, 32% and 88%, respectively, compared to only considering the mud pressure. It is indicated that the cutterhead thrust plays an important role in the excavation face support.
  • 图  1   隧洞穿越右岸大堤段地层结构图

    Figure  1.   Stratigraphic structure of tunnel crossing right bank embankment section

    图  2   隧洞穿越重点段泥浆压与轴向地应力曲线

    Figure  2.   Curves of mud pressure and axial geostress in key crossing sections of tunnel

    图  3   泥水盾构工作示意图

    Figure  3.   Schematic diagram of operation of slurry shield

    图  4   开挖面与泥水盾构机轴向受力示意图

    Figure  4.   Schematic diagram of axial force on excavation surface and slurry shield machine

    图  5   径向有效土压总和计算简图

    Figure  5.   Simplified diagram for calculating total radial effective earth pressure

    图  6   隧洞穿越重点段支护力与轴向地层力曲线

    Figure  6.   Curves of mud pressure and axial geostress for key crossing sections of tunnel

    表  1   隧洞穿越地层类型及相关物理力学参数

    Table  1   Stratum types and related physical and mechanical parameters crossed by tunnel

    编号 名称 干密度/(kg·m-3) 黏聚力/kPa 内摩擦角/(°) 轴向压力系数K0
    1 重粉质壤土 1540 27 21 0.33
    2 粉砂 1510 0 22 0.25
    3 细砂 1550 0 24 0.28
    4 粉质黏土 1510 30 11 0.43
    5 重粉质壤土 1560 25 18 0.33
    6 轻粉质壤土 1470 16 21 0.30
    7 重粉质壤土 1520 20 20 0.33
    8 粉质黏土 1530 27 18 0.43
    9/10 重粉质壤土 1650 21 19 0.33
    11/12 中细砂 1700 0 27 0.28
    13 人工填土 1540 27 21 0.33
    14 防渗心墙 2400
    下载: 导出CSV

    表  2   隧洞穿越重点段泥浆压与轴向地应力及其区间之比

    Table  2   Ratios of mud pressure to axial geostress and intervals in key crossing sections of tunnel

    编号 地段 pmpw+pas pm(pw+pas)
    1 右岸大堤段 0.83 0
    2 沁河河槽段 0.76 0
    3 左岸大堤段 1.04 0.78
    下载: 导出CSV

    表  3   隧洞穿越重点段刀盘推力在开挖面支护力中的平均占比

    Table  3   Average proportions of cutterhead thrust in excavation face support force in key crossing sections of tunnel 单位: %

    右岸大堤段 沁河河槽段 左岸大堤段
    21 24 11
    下载: 导出CSV

    表  4   隧洞穿越重点段支护力均值及在轴向地层力区间的占比

    Table  4   Mean values of support force and their proportions in axial formation force range in key crossing sections of tunnel

    编号 名称 支护力/kN 限内占比/% 限上占比/% 限下占比/%
    1 右岸大堤段 13034 78 1 21
    2 沁河河槽段 15980 32 14 54
    3 左岸大堤段 17142 88 12 0
    下载: 导出CSV

    表  5   隧洞穿越重点段隧洞轴线处地表沉降均值与测点数

    Table  5   Mean surface settlements and measuring points at tunnel axis in key crossing sections of tunnel

    项目 沉降/mm 测点数
    右岸大堤段 2.58 6
    沁河河槽段 2.70 13
    左岸大堤段 1.31 18
    下载: 导出CSV
  • [1] 张凤祥. 盾构隧道[M]. 北京: 人民交通出版社, 2004.

    ZHANG Fengxiang. Shield Tunnelling Method[M]. Beijing: China Communications Press, 2004. (in Chinese)

    [2] 韦良文, 张庆贺, 邓忠义. 大型泥水盾构隧道开挖面稳定机理与应用研究[J]. 地下空间与工程学报, 2007, 3(1): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200701019.htm

    WEI Liangwen, ZHANG Qinghe, DENG Zhongyi. Research on mechanism and application of face stability in large slurry shield tunneling[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(1): 87-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200701019.htm

    [3] 袁大军, 尹凡, 王华伟, 等. 超大直径泥水盾构掘进对土体的扰动研究[J]. 岩石力学与工程学报, 2009, 28(10): 2074-2080. doi: 10.3321/j.issn:1000-6915.2009.10.015

    YUAN Dajun, YIN Fan, WANG Huawei, et al. Study of soil disturbance caused by super-large diameter slurry shield tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2074-2080. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.015

    [4] 邓宗伟, 伍振志, 曹浩, 等. 基于流固耦合的泥水盾构隧道施工引发地表变形[J]. 中南大学学报(自然科学版), 2013, 44(2): 785-791. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201302052.htm

    DENG Zongwei, WU Zhenzhi, CAO Hao, et al. Surface deformation of slurry shield tunneling using fluid-solid coupling theory[J]. Journal of Central South University (Science and Technology), 2013, 44(2): 785-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201302052.htm

    [5] 闵凡路, 朱伟, 魏代伟, 等. 泥水盾构泥膜形成时开挖面地层孔压变化规律研究[J]. 岩土工程学报, 2013, 35(4): 722-727. http://cge.nhri.cn/cn/article/id/15027

    MIN Fanlu, ZHU Wei, WEI Daiwei, et al. Change of pore water pressure in soil as filter cakes formed on excavation face in slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 722-727. (in Chinese) http://cge.nhri.cn/cn/article/id/15027

    [6] 刘新荣, 刘东双, 陈强, 等. 泥水盾构开挖面稳定影响因素及参数优化研究[J]. 地下空间与工程学报, 2022, 18(6): 1954-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202206024.htm

    LIU Xinrong, LIU Dongshuang, CHEN Qiang, et al. Research on the sensitivity of factors affecting the stability of slurry shield excavation face and control parameter optimization[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(6): 1954-1961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202206024.htm

    [7] 刘学彦, 王复明, 袁大军, 等. 泥水盾构支护压力设定范围及其影响因素分析[J]. 岩土工程学报, 2019, 41(5): 908-917. doi: 10.11779/CJGE201905014

    LIU Xueyan, WANG Fuming, YUAN Dajun, et al. Range of support pressures for slurry shield and analysis of its influence factors[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 908-917. (in Chinese) doi: 10.11779/CJGE201905014

    [8] 袁大军, 沈翔, 刘学彦, 等. 泥水盾构开挖面稳定性研究[J]. 中国公路学报, 2017, 30(8): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708003.htm

    YUAN Dajun, SHEN Xiang, LIU Xueyan, et al. Research on excavation face stability of slurry shield tunneling[J]. China Journal of Highway and Transport, 2017, 30(8): 24-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708003.htm

    [9] 牛永前, 杨立林, 申鲁. 基于Peck公式的富水砂质地层盾构隧洞施工沉降分析[J]. 人民黄河, 2023, 45(4): 130-135, 142. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202304023.htm

    NIU Yongqian, YANG Lilin, SHEN Lu. Sedimentation analysis of shield tunnel construction on water-rich sandy stratum based on peck formula[J]. Yellow River, 2023, 45(4): 130-135, 142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202304023.htm

    [10] 孙飞祥, 孙振川, 张兵, 等. ϕ15.80 m泥水平衡盾构主要推进阻力特征分析[J]. 地下空间与工程学报, 2021, 17(增刊1): 235–240, 246. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S1033.htm

    SUN Feixiang, SUN Zhenchuan, ZHANG Bing, et al. Characteristics analysis of main resistance force for ϕ15.80 m slurry balance shield[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 235–240, 246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S1033.htm

图(6)  /  表(5)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  49
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回