Impact effects of debris avalanches based on centrifuge modeling and DEM simulation
-
摘要: 滑坡碎屑流物质组成的复杂性造成其对工程结构的冲击效应尚未被完全理解,特别是粒径大小与级配特征如何影响冲击力及其组成,以及拦挡结构设计中如何考虑粒径特征的影响,当前仍缺乏深入的研究。针对这些问题,开展了一系列离心试验与离散元模拟分析,研究结果表明滑坡碎屑流的颗粒粒径控制着冲击力的波动行为,即随着粒径的增大,总冲击力的峰值越来越明显,且伴随着显著的离散冲击力值。小粒径颗粒对大粒径颗粒存在明显缓冲效应,且小颗粒在冲击过程中更容易进入大颗粒的孔隙,进而贡献作用力,因此粒径和级配特征同时控制着冲击力的绝对值。不同粒径特征控制着颗粒尺度上动量传递机制,进而改变了滑坡碎屑流的冲击效应,由此造成冲击动压力系数随着Savage数的增大基本上呈现出递增的关系,因此建议采用Froude数与Savage数作为双控指标,辅助确定冲击动压力系数。此外,通过分析冲击力合力作用位置,发现工程设计中可按总冲击力峰值及矩形分布荷载进行考虑。Abstract: The complexity of the material composition of debris avalanches results in the impact effects on engineering structures not being completely understood. In particular, how the particle size and distribution characteristics affect the impact force and its composition and how to consider the influences of characteristics of particle size in the design of barrier structures still lack in-depth researches. To answer these questions, a series of centrifuge modeling tests and DEM simulation tests are conducted. The results indicate that the particle size dominates the fluctuation behaviors of the impact force of the debris avalanche, and with the increasing particle size, the peaks become increasingly obvious, accompanied by a significant discrete impact force. The smaller particles show an obvious cushion-effect to larger particles, and they more easily enter into the void formed by larger particles and interact with the barrier, thus contributing to the total impact force. Therefore, both the particle size and the distribution characteristics control the absolute value of the impact force. The particle characteristics determine the momentum transfer mechanism at the particle scale and thus the impact effects. For this reason, it is found that the dynamic impact pressure coefficientshows an increasing trend with the increasing Savage number of debris avalanches. Thus, it is suggested that the Froude number and Savage number should be jointly used to select appropriate. In addition, based on the analysis of the acting point of the resultant impact force, we suggest that in engineering design, the total impact force combined with the rectangular distribution mode can be adopted for safety.
-
Keywords:
- debris avalanche /
- impact effect /
- barrier structure /
- centrifuge modeling /
- DEM simulation
-
-
表 1 离心试验滑体试样的粒径特征与物理性质
Table 1 Particle characteristics and physical properties of test materials used in centrifuge modeling
粒径级配 最小干密度
/(g·cm-3)最大干密度
/(g·cm-3)内摩擦角/(°) 界面摩擦角/(°) 圆锥试验 溃坝试验 PM1(0.1~0.5 mm) 1.28 1.63 31 28 20 PM2 (0.5~1 mm) 1.34 1.62 30 27 20 PM3 (1~2 mm) 1.37 1.60 31 27 19 PM4 (2~4 mm) 1.37 1.56 31 30 18 PB1 1.29 1.64 30 29 19 PB2 1.35 1.55 31 30 18 表 2 离散元模拟工况设置
Table 2 Programs of DEM simulations
滑槽坡度/(°) 粒径特征 20,45 NM1(4 mm);NM2(8 mm);NM3(16 mm) 20,45 NB1 (90%),NB2 (80%),NB3 (60%),NB4 (40%),NB5 (20%),NB6 (10%) 表 3 离心试验中冲击前滑坡碎屑流的流态(模型尺度)
Table 3 Flow regimes of debris avalanche before impact in centrifuge modeling tests (model scale)
工况 项目 /(m·s-1) /mm PM1 测试1 12.55 12.16 7.13 0.03 测试2 13.12 12.02 7.50 0.03 测试3 12.80 12.66 7.13 0.02 平均值 12.82 12.28 7.25 0.03 PM2 测试1 12.51 11.36 7.35 0.20 测试2 13.42 12.99 7.37 0.16 测试3 14.28 13.56 7.68 0.16 平均值 13.40 12.64 7.47 0.17 PM3 测试1 12.73 13.32 6.91 0.52 测试2 12.07 13.06 6.62 0.50 测试3 11.94 12.77 6.62 0.52 平均值 12.24 13.05 6.71 0.52 PM4 测试1 13.85 14.64 7.17 1.87 测试2 13.25 15.23 6.72 1.52 测试3 13.43 16.08 6.63 1.33 测试4 12.92 15.94 6.41 1.26 平均值 13.36 15.47 6.73 1.47 PB1 测试2 13.43 12.04 7.67 0.03 测试3 13.93 12.97 7.67 0.03 平均值 13.68 12.50 7.66 0.03 PB2 测试2 13.35 14.23 7.01 1.89 测试3 12.99 13.83 6.92 1.95 平均值 13.17 14.03 6.96 1.92 表 4 不同粒径特征下滑坡碎屑流冲击压力峰值的离心试验结果
Table 4 Peak values of impact pressure of debris avalanches with different particle characteristics obtained from centrifuge tests
单位: kPa 工况 测试编号 P1 P2 P3 P4 P5 P6 PM1 测试1 182.41 164.82 86.85 56.01 3.03 85.42 测试2 178.71 136.06 85.03 33.71 5.95 65.00 测试3 176.22 150.16 84.51 32.19 5.88 60.60 平均值 179.11 150.35 85.46 40.64 4.96 70.34 标准偏差 2.55 11.74 1.01 10.89 1.36 10.81 PM2 测试1 210.68 196.95 140.39 72.89 17.18 108.72 测试2 232.51 187.69 148.07 68.77 20.25 105.82 测试3 261.75 220.33 139.42 56.86 20.22 105.35 平均值 234.98 201.66 142.63 66.17 19.22 106.63 标准偏差 25.62 16.82 4.74 8.33 1.77 1.82 PM3 测试1 255.91 203.04 106.48 79.37 27.71 98.19 测试2 249.64 180.80 143.98 74.75 25.18 126.92 测试3 204.24 241.77 189.94 65.03 20.10 92.44 平均值 236.59 208.54 146.80 73.05 24.33 105.85 标准偏差 28.20 30.85 41.80 7.32 3.88 18.48 PM4 测试1 407.69 170.97 150.82 67.48 54.09 78.07 测试2 302.82 168.89 112.81 41.65 28.71 118.84 测试3 209.72 119.67 154.94 124.91 27.28 108.62 测试4 215.13 163.51 92.38 108.80 14.93 76.95 平均值 283.84 155.76 127.74 85.71 31.25 95.62 标准偏差 92.94 24.27 30.25 38.05 16.43 21.33 PB1 测试1 308.58 204.48 99.83 52.58 13.66 82.36 测试2 232.76 194.12 117.92 51.26 13.49 90.93 测试3 262.68 188.72 120.89 59.22 12.63 77.57 平均值 268.01 195.77 112.88 54.35 13.26 83.62 标准偏差 38.19 8.01 11.40 4.27 0.55 6.77 PB2 测试1 229.09 262.83 180.65 46.14 16.53 142.13 测试2 215.84 140.17 179.31 69.56 10.12 154.71 测试3 234.75 160.28 144.93 53.00 12.43 183.99 平均值 226.56 187.76 168.30 56.23 13.03 160.27 标准偏差 9.70 65.78 20.25 12.04 3.25 21.48 表 5 不同粒径特征下滑坡碎屑流流态及冲击力峰值的离散元模拟结果
Table 5 Peak impact forces and flow regimes of debris avalanches with different particle characteristics obtained from DEM simulations
测试编号 /(m·s-1) /m /N /N NM1_25° 2.661 0.040 6.469 0.187 135.57 30.63 NM1_45° 4.255 0.068 5.862 0.092 519.21 408.07 NM2_25° 2.489 0.043 5.821 0.519 159.83 101.46 NM2_45° 4.150 0.071 5.620 0.317 515.45 474.38 NM3_45° 2.364 0.049 5.186 1.274 248.61 243.31 NM3_25° 4.091 0.080 5.224 0.866 627.51 589.40 NB1_25° 2.360 0.036 6.012 0.779 149.61 104.51 NB1_45° 4.060 0.058 6.094 0.563 547.82 492.77 NB2_25° 2.520 0.040 6.090 0.647 155.41 111.33 NB2_45° 4.090 0.076 5.345 0.249 593.21 560.64 NB3_25° 2.440 0.050 5.274 0.311 168.54 123.92 NB3_45° 4.050 0.080 5.159 0.209 591.19 525.95 NB4_25° 2.340 0.050 5.058 1.143 161.90 127.75 NB4_45° 4.030 0.080 5.133 0.828 580.51 545.18 NB5_25° 2.320 0.050 5.015 1.124 156.31 130.42 NB5_45° 4.080 0.082 5.133 0.788 600.89 573.09 NB6_25° 2.312 0.050 4.998 1.116 159.07 133.42 NB6_45° 4.020 0.081 5.089 0.794 576.32 565.95 -
[1] HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194. doi: 10.1007/s10346-013-0436-y
[2] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm XU Qiang, LI Weile, DONG Xiujun, et al. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
[3] 李坤, 程谦恭, 林棋文, 等. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 2022(3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm LI Kun, CHENG Qiangong, LIN Qiwen, et al. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 2022(3): 893-912. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
[4] GARIANO S L, GUZZETTI F. Landslides in a changing climate[J]. Earth Science Reviews, 2016, 162: 227-252. doi: 10.1016/j.earscirev.2016.08.011
[5] THOURET J C, ANTOINE S, MAGILL C, et al. Lahars and debris flows: characteristics and impacts[J]. Earth Science Reviews, 2020, 201: 103003. doi: 10.1016/j.earscirev.2019.103003
[6] ZHOU G G D, SONG D, CHOI C E, et al. Surge impact behavior of granular flows: effects of water content[J]. Landslides, 2018, 15(4): 695-709. doi: 10.1007/s10346-017-0908-6
[7] SHEN W G, ZHAO T, ZHAO J D, et al. Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses[J]. Engineering Geology, 2018, 241: 86-96. doi: 10.1016/j.enggeo.2018.05.011
[8] NG C W W, MAJEED U, CHOI C E. Effects of solid fraction of saturated granular flows on overflow and landing mechanisms of rigid barriers[J]. Géotechnique, 2024, 74(1): 27-41. doi: 10.1680/jgeot.21.00170
[9] FAUG T, LACHAMP P, NAAIM M. Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures[J]. Natural Hazards and Earth System Sciences, 2002, 2: 187-191. doi: 10.5194/nhess-2-187-2002
[10] 王友彪, 姚昌荣, 刘赛智, 等. 泥石流对桥墩冲击力的试验研究[J]. 岩土力学, 2019, 40(2): 616-623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902023.htm WANG Youbiao, YAO Changrong, LIU Saizhi, et al. Experimental study of debris flow impact forces on bridge piers[J]. Rock and Soil Mechanics, 2019, 40(2): 616-623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902023.htm
[11] 何思明, 李新坡, 吴永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报, 2007, 26(8): 1664-1669. doi: 10.3321/j.issn:1000-6915.2007.08.017 HE Siming, LI Xinpo, WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664-1669. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.017
[12] WANG L P, SONG D R, ZHOU G G D, et al. Debris flow overflowing flexible barrier: physical process and drag load characteristics[J]. Landslides, 2022, 19(8): 1881-1896. doi: 10.1007/s10346-022-01880-0
[13] ARMANINI A, ROSSI G, LARCHER M. Dynamic impact of a water and sediments surge against a rigid wall[J]. Journal of Hydraulic Research, 2020, 58(2): 314-325. doi: 10.1080/00221686.2019.1579113
[14] SONG D R, CHEN X Q, ZHOU G G D, et al. Impact dynamics of debris flow against rigid obstacle in laboratory experiments[J]. Engineering Geology, 2021, 291: 106211. doi: 10.1016/j.enggeo.2021.106211
[15] FAUG T. Impact force of granular flows on walls normal to the bottom: slow versus fast impact dynamics[J]. Canadian Geotechnical Journal, 2021, 58(1): 114-124. doi: 10.1139/cgj-2019-0399
[16] ALBABA A, LAMBERT S, FAUG T. Dry granular avalanche impact force on a rigid wall: analytic shock solution versus discrete element simulations[J]. Physical Review E, 2018, 97(): 052903. doi: 10.1103/PhysRevE.97.052903
[17] 王东坡, 张小梅. 泥石流冲击弧形拦挡坝动力响应研究[J]. 岩土力学, 2020, 41(12): 3851-3861. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012004.htm WANG Dongpo, ZHANG Xiaomei. Study on dynamic response of debris flow impact arc-shaped dam[J]. Rock and Soil Mechanics, 2020, 41(12): 3851-3861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012004.htm
[18] BI Y Z, DU Y J, HE S M, et al. Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches[J]. Landslides, 2018, 15(5): 1029-1043. doi: 10.1007/s10346-018-0979-z
[19] GOODWIN G R, CHOI C E, YUNE C Y. Towards rational use of baffle arrays on sloped and horizontal terrain for filtering boulders[J]. Canadian Geotechnical Journal, 2021, 58(10): 1571-1589. doi: 10.1139/cgj-2020-0363
[20] WANG D P, LI Q Z, BI Y Z, et al. Effects of new baffles system under the impact of rock avalanches[J]. Engineering Geology, 2020, 264: 105261. doi: 10.1016/j.enggeo.2019.105261
[21] JIANG Y J, ZHAO Y, TOWHATA I, et al. Influence of particle characteristics on impact event of dry granular flow[J]. Powder Technology, 2015, 270: 53-67. doi: 10.1016/j.powtec.2014.10.005
[22] JIANG Y J, FAN X Y, LI T H, et al. Influence of particle-size segregation on the impact of dry granular flow[J]. Powder Technology, 2018, 340: 39-51. doi: 10.1016/j.powtec.2018.09.014
[23] CUI Y F, CHOI C E, LIU L H D, et al. Effects of particle size of mono-disperse granular flows impacting a rigid barrier[J]. Natural Hazards, 2018, 91(3): 1179-1201. doi: 10.1007/s11069-018-3185-3
[24] ZHANG B, HUANG Y. Effect of unsteady flow dynamics on the impact of monodisperse and bidisperse granular flow[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(2): 77. doi: 10.1007/s10064-022-02573-7
[25] 宋东日, 周公旦, CHOI C E, 等. 土工离心机模拟泥石流问题的相似性考虑[J]. 岩土工程学报, 2019, 41(12): 2262-2271. doi: 10.11779/CJGE201912011 SONG Dongri, ZHOU Gongdan, CHOI C E, et al. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. (in Chinese) doi: 10.11779/CJGE201912011
[26] SONG D, CHOI C E, ZHOU G G D, et al. Impulse load characteristics of bouldery debris flow impact[J]. Géotechnique Letters, 2018, 8(2): 111-117. doi: 10.1680/jgele.17.00159
[27] ZHANG B, HUANG Y. Impact behavior of superspeed granular flow: insights from centrifuge modeling and DEM simulation[J]. Engineering Geology, 2022, 299: 106569. doi: 10.1016/j.enggeo.2022.106569
[28] DEM solutions, EDEM 2020.1 document[Z]. Edinburgh: Altair, 2020: 1-100 [April 9, 2023]. https://www.altair.com.cn/edem/.
[29] GOODWIN S R, CHOI C E. Translational inertial effects and scaling considerations for coarse granular flows impacting landslide-resisting barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021153. doi: 10.1061/(ASCE)GT.1943-5606.0002661
[30] LAM H W K, WONG A L. Experimental and numerical study of dynamic soil debris impact load on reinforced concrete debris-resisting barriers[J]. Landslides, 2021, 18(3): 955-966. doi: 10.1007/s10346-020-01529-w
[31] KWAN J. Supplementary technical guidance on design of rigid debris-resisting barriers [R]. Hong Kong: Geotechnical Engineering Office, 2012: 1-88. https://www.cedd.gov.hk/eng/publications/geo_reports/geo_rpt270.html.
[32] LI K, WANG Y F, LIN Q W, et al. Experiments on granular flow behavior and deposit characteristics: implications for rock avalanche kinematics[J]. Landslides, 2021, 18(5): 1779-1799. doi: 10.1007/s10346-020-01607-z
-
期刊类型引用(1)
1. 于思冬,朱熊彪. 基于非接触式加载的海上风机桩土相互作用模型试验. 吉林水利. 2025(02): 12-17 . 百度学术
其他类型引用(0)
-
其他相关附件