• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

沥青混凝土心墙坝漫顶溃坝试验与溃坝过程数值模拟

杨蒙, 钟启明, 林忠, 李宇, 卢洪宁

杨蒙, 钟启明, 林忠, 李宇, 卢洪宁. 沥青混凝土心墙坝漫顶溃坝试验与溃坝过程数值模拟[J]. 岩土工程学报, 2024, 46(7): 1534-1540. DOI: 10.11779/CJGE20230291
引用本文: 杨蒙, 钟启明, 林忠, 李宇, 卢洪宁. 沥青混凝土心墙坝漫顶溃坝试验与溃坝过程数值模拟[J]. 岩土工程学报, 2024, 46(7): 1534-1540. DOI: 10.11779/CJGE20230291
YANG Meng, ZHONG Qiming, LIN Zhong, LI Yu, LU Hongning. Model tests and numerical simulation of overtopping-induced breach process of asphalt concrete core dams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1534-1540. DOI: 10.11779/CJGE20230291
Citation: YANG Meng, ZHONG Qiming, LIN Zhong, LI Yu, LU Hongning. Model tests and numerical simulation of overtopping-induced breach process of asphalt concrete core dams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1534-1540. DOI: 10.11779/CJGE20230291

沥青混凝土心墙坝漫顶溃坝试验与溃坝过程数值模拟  English Version

基金项目: 

国家重点研发计划项目 2022YFC3005501

国家自然科学基金长江水科学研究联合基金重点支持项目 U2040221

详细信息
    作者简介:

    杨蒙(1996—),男,博士研究生,主要从事土石坝溃坝灾害风险评估方面的研究工作。E-mail: mengyang@nhri.cn

    通讯作者:

    钟启明, E-mail: qmzhong@nhri.cn

  • 中图分类号: TV698

Model tests and numerical simulation of overtopping-induced breach process of asphalt concrete core dams

  • 摘要: 基于中国新疆射月沟水库溃坝案例资料,在水槽冲蚀试验系统进行了沥青混凝土心墙坝漫顶溃坝试验,直观展现了坝壳料冲蚀与心墙折断过程,发现了抗冲蚀能力强的沥青混凝土心墙对溃坝过程的重要影响。将沥青混凝土心墙坝的漫顶溃坝过程分为3个阶段:坝壳料溯源冲蚀至沥青混凝土心墙裸露;心墙第一次折断,溃口流量迅速增大并出现峰值;心墙发生多次折断直至溃口稳定。在试验成果的基础上建立了模拟溃口流量和溃口形态演化的沥青混凝土心墙坝漫顶溃坝过程数学模型,模型的特色在于通过冲蚀公式模拟沥青混凝土心墙的裸露长度,采用力矩平衡法计算裸露心墙的折断时刻、折断长度和折断次数,从而合理反映了沥青混凝土心墙坝漫顶溃坝时坝壳料与心墙的耦合作用机制。采用建立的数学模型对射月沟溃坝过程进行了反演分析,计算结果表明重要溃坝参数与实测值误差均在±25%以内,较好地反映了溃坝过程,研究成果可为沥青混凝土心墙坝漫顶溃坝过程模拟提供借鉴。
    Abstract: Based on the dam breach case data of Sheyuegou Reservoir in Xinjiang Autonomous Region of China, the model tests on overtopping-induced breach of asphalt concrete core dams are conducted in the flume erosion model test system, and the process of erosion of dam shell materials and bending of core walls is visually demonstrated. It is found that the asphalt concrete core with strong erosion resistance has important influences on dam breach process. The breach process of asphalt concrete core dams due to overtopping can be divided into three stages: retrogressive erosion of dam shell materials, the first fracture of asphalt concrete core until the occurrence of the peak flows, occurrence of multiple fractures of core wall until the stabilization of the breach morphology. Based on the breach model test results, a mathematical model is developed to simulate the breach flow discharge and the breach morphology evolution of asphalt concrete core dams due to overtopping. The highlights of the model are the simulation of the exposed length of asphalt concrete core by soil erosion formula, and the calculation of breaking time, breaking length, and number of breaking time of the exposed core wall by the moment balance method. Therefore, the coupling mechanism between dam shell materials and core wall of asphalt concrete core dams can be reflected reasonably during dam breaching. The mathematical model is used to conduct back analysis of the dam breach process of Sheyuegou Reservoir, and the calculated results show that the relative errors of important breaching parameters are within ±25%, which gives a good perfomance in dam breach modeling. The research results can provide reference for simulation of breach process of overtopping-induced asphalt concrete core dams.
  • 图  1   射月沟水库大坝典型断面示意图

    Figure  1.   Schematic diagram of typical cross section of dam of Sheyuegou Reservoir

    图  2   射月沟水库溃口最终形态

    Figure  2.   Final breach morphology of Sheyuegou Reservoir after dam breaching

    图  3   射月沟水库溃坝过程照片

    Figure  3.   Photos of dam breach process of Sheyuegou Reservoir

    图  4   水槽冲蚀试验系统示意图

    Figure  4.   Schematic diagram of flume erosion model test system

    图  5   试验坝料级配曲线

    Figure  5.   Grain-size distribution curves of dam materials for model tests

    图  6   溃坝试验各阶段溃口形态

    Figure  6.   Breach morphologies at each stage during model tests

    图  7   溃口形态演化过程

    Figure  7.   Evolution process of breach morphology

    图  8   溃口流量过程线

    Figure  8.   Breach hydrograph during model tests

    图  9   射月沟水库溃坝计算与实测洪水流量过程

    Figure  9.   Calculated and measured breach hydrographs of Sheyuegou Reservoir

    图  10   射月沟水库溃坝计算与实测溃口形态

    Figure  10.   Calculated and measured breach morphologies of Sheyuegou Reservoir

    表  1   模型试验参数设定

    Table  1   Parameters for model tests

    坝高/m 坝顶宽/m 上/下游坡比
    0.6 0.1 1∶2
    心墙高度/m 心墙宽度/m 入流量/(L·s-1)
    0.53 0.01 0.83
    下载: 导出CSV

    表  2   沥青混凝土性质

    Table  2   Properties of asphalt concrete

    密度/(g·cm-3) 骨料最大粒径/mm 水稳定性/% 黏附性 初期强度/kN 成型强度/kN
    2.2 8 88 5级 4.5 8.8
    下载: 导出CSV

    表  3   模型输入参数

    Table  3   Input parameters of mathematical model

    坝高/m 顶宽/m 坝长/m 坝壳料 沥青混凝土心墙
    上游坡比 下游坡比 初始库水位/m d50/mm c1/kPa φ/(°) kd/(cm3·N-1·s-1) τc/Pa 高度/m 宽度/m 与坝轴线距离/m c2/kPa
    41.15 6 403 1∶2.25 1∶2 1497.75 10 0 38.8 3.0 5 38 2 -2 300
    下载: 导出CSV

    表  4   射月沟水库溃坝参数计算值与实测值对比

    Table  4   Comparison between calculated and measured breaching parameters of Sheyuegou Reservoir

    比较项 Qp/(m3·s-1) Bt/m Bb/m Tp/h
    实测值 6700.0 89.9 60.1 1.25
    计算值 6851.5 105.2 46.4 1.21
    相对误差 2.2% 17.0% -22.8% -3.2%
    下载: 导出CSV
  • [1] 中华人民共和国水利部. 2020年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2021.

    Ministry of Water Resources of the People's Republic of China. 2020 Statistic Bulletin on China Water Activities[M]. Beijing: China Water & Power Press, 2021. (in Chinese)

    [2] 余林. 寒冷地区沥青混凝土心墙坝研究现状分析[J]. 水利规划与设计, 2018(1): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH201801036.htm

    YU Lin. Analysis of research status of asphalt concrete core dam in cold area[J]. Water Resources Planning and Design, 2018(1): 114-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH201801036.htm

    [3]

    FENG S, WANG W B, HU W H, et al. Design and performance of the Quxue asphalt-core rockfill dam[J]. Soils and Foundations, 2020, 60(4): 1036-1049. doi: 10.1016/j.sandf.2020.06.008

    [4] 党发宁, 高俊, 任劼, 等. 200 m级超高沥青混凝土心墙堆石坝的受力可行性研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3690-3700. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2044.htm

    DANG Faning, GAO Jun, REN Jie, et al. Study on mechanical feasibility of 200 m grade ultra-high asphalt concrete core rockfill dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3690-3700. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2044.htm

    [5]

    ZHANG Y B, WANG W B, ZHU Y. Investigation on conditions of hydraulic fracturing for asphalt concrete used as impervious core in dams[J]. Construction and Building Materials, 2015, 93: 775-781. doi: 10.1016/j.conbuildmat.2015.05.097

    [6]

    AKHTARPOUR A, KHODAII A. Experimental study of asphaltic concrete dynamic properties as an impervious core in embankment dams[J]. Construction and Building Materials, 2013, 41: 319-334. doi: 10.1016/j.conbuildmat.2012.11.044

    [7]

    YU S, ZHANG Q, CHEN Z Y, et al. Study of the Sheyuegou Dam breach–Experience with the post-failure investigation and back analysis[J]. Engineering Failure Analysis, 2021, 125: 105441. doi: 10.1016/j.engfailanal.2021.105441

    [8]

    ZHONG Q M, WANG L, CHEN S S, et al. Breaches of embankment and landslide dams - State of the art review[J]. Earth-Science Reviews, 2021, 216: 103597. doi: 10.1016/j.earscirev.2021.103597

    [9]

    SINGH V P. Dam breach modeling technology[M]. Dordrecht: Kluwer Academic Publishers, 1996.

    [10]

    FREAD D L, DAMBREAK: The NWS Dam Break Flood Forecasting Model[R]. Silver Spring: National Oceanic and Atmospheric Administration, 1984.

    [11]

    ZHONG Q M, CHEN S S, DENG Z. Numerical model for homogeneous cohesive dam breaching due to overtopping failure[J]. Journal of Mountain Science, 2017, 14(3): 571-580. doi: 10.1007/s11629-016-3907-5

    [12]

    TEMPLE D M. Stability of grass lined channels following mowing[J]. Transactions of the ASAE, 1985, 28(3): 750-754. doi: 10.13031/2013.32332

    [13]

    BRIAUD J L, TING F C K, CHEN H C, et al. Erosion function apparatus for scour rate predictions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(2): 105-113. doi: 10.1061/(ASCE)1090-0241(2001)127:2(105)

    [14]

    WU W M. Computational River Dynamics[M]. Boca Raton: CRC Press, 2007.

    [15]

    TEMPLE D M. Estimating flood damage to vegetated deep soil spillways[J]. Applied Engineering in Agriculture, 1992, 8(2): 237-242. doi: 10.13031/2013.26059

    [16] 梅世昂, 霍家平, 钟启明. 均质土坝漫顶溃决"陡坎" 移动参数确定[J]. 水利水运工程学报, 2016(2): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201602004.htm

    MEI Shi'ang, HUO Jiaping, ZHONG Qiming. Determination of headcut migration parameters for homogeneous earth dam due to overtopping failure[J]. Hydro-Science and Engineering, 2016(2): 24-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201602004.htm

  • 期刊类型引用(1)

    1. 王建中,孙万光,李晓军,张蓉. 梯级水库心墙坝连溃过程数值模拟. 中国农村水利水电. 2025(04): 7-13 . 百度学术

    其他类型引用(0)

图(10)  /  表(4)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  44
  • PDF下载量:  67
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-04-03
  • 网络出版日期:  2024-07-11
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回