Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

堆石料颗粒的延迟破碎时间研究

迟世春, 王腾腾, 贾宇峰

迟世春, 王腾腾, 贾宇峰. 堆石料颗粒的延迟破碎时间研究[J]. 岩土工程学报, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
引用本文: 迟世春, 王腾腾, 贾宇峰. 堆石料颗粒的延迟破碎时间研究[J]. 岩土工程学报, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
Citation: CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074

堆石料颗粒的延迟破碎时间研究  English Version

基金项目: 

国家自然科学基金面上项目 52379116

详细信息
    作者简介:

    迟世春(1964—),男,教授,博士生导师,主要从事堆石料工程特性及本构关系方面的研究工作。E-mail:schchi@dlut.edu.cn

    通讯作者:

    贾宇峰, E-mail: jiayf130@dlut.edu.cn

  • 中图分类号: TU43

Delayed crushing time for particles of rockfill materials

  • 摘要: 堆石料颗粒的延迟破碎是指颗粒受力一定时间后发生的破碎。给出颗粒延迟破碎时间是采用离散元法模拟堆石料流变进行定量分析的前提。从断裂力学出发,将颗粒内部缺陷概化为一币形裂纹,给出了颗粒瞬时破碎强度与裂纹半长的关系。将颗粒瞬时强度作为随机变量,采用Logistic函数描述其分布,并运用求解随机变量函数概率分布的方法,求出裂纹半长的概率分布。然后将颗粒岩石加工成板试样,通过双扭松弛试验,测量其亚临界裂纹扩展速度。在此基础上对颗粒裂纹扩展方程进行积分,得到裂纹贯通(即颗粒延迟破碎)的时间表达式。以裂纹半长为随机变量,求出颗粒延迟破碎时间的概率分布。云南红石岩堰塞坝工程白云岩颗粒的分析结果表明,在相同应力水平下,大颗粒延迟破碎时间长且离散性大,小颗粒延迟破碎时间短且离散性小。这与堆石料室内流变试验稳定快而现场堆石坝流变持续时间长的宏观现象相吻合。颗粒延迟破碎时间的给出为采用离散元模拟堆石料流变,提升堆石料流变本构模型,解决堆石料室内流变试验的时间尺寸效应奠定了基础。
    Abstract: The delayed crushing of rockfill particles is specifically referring to the crushing of particles after loading for a certain period time, which is the basis for the rheological deformation calculation using the discrete element method (DEM). Based on the fracture mechanics, the internal defects of particles are generalized into a coin-shaped crack, and the relationship between the instantaneous crushing strength of particles and the half-length of the crack is developed. The Logistic function is used to describe the distribution of particle strength as a random variable, and the probability distribution of half-length of crack is obtained by using the method of solving the probability distribution of random variable function. The rockfill particle is processed into a plate specimen, and its sub-critical crack propagation velocity is measured using a bi-torsional relaxation test. On this basis, the formula for crack propagation of particles is integrated to obtain the time expression for crack penetration (i.e. delayed particle crushing). The probability distribution of delayed crushing time of particles can be calculated using the half-length of the crack as a random variable. The results of dolomite particles in Hongshiyan landslide dam in Yunnan Province show that under the same stress level, large particles have long delayed crushing time and large standard deviation, while small particles have short delayed crushing time and small standard deviation. This is consistent with the macro-phenomenon that the rheological deformation of rockfill materials converges quickly in laboratory tests, while the rheological deformation of rockfill dam lasts a long time in field. The development of delayed crushing time of particles provides conditions for simulating the rheological behaviors of rockfill using the DEM, improving the rheological constitutive model for rockfill materials, and solving the time size-effects of rockfill rheology for laboratory tests.
  • 图  1   各粒组瞬时强度的Logistic分布图

    Figure  1.   Logistic distribution of instantaneous strength for various grain groups

    图  2   双扭试验装置及双扭试样受力示意图

    Figure  2.   Schematic diagram of device and specimen loading of double-torsion tests

    图  3   双扭松弛试验及其试验曲线

    Figure  3.   Double-torsion relaxation tests and test curves

    图  4   lgV与lgKI数据及拟合曲线

    Figure  4.   Data of lgV versus lgKI and fitting curves

    图  5   白云岩颗粒内部虚拟裂纹初始半长的分布函数

    Figure  5.   Half-length distribution of initial virtual crack of dolomite particles

    图  6   不同应力水平下各粒组白云岩延迟破碎时间预测

    Figure  6.   Prediction of delayed crushing time of various dolomite particle groups under different stress levels

    图  7   白云岩颗粒参数的尺寸相关性曲线

    Figure  7.   Size correlation curves of parameters of dolomite particles

    表  1   各粒组瞬时强度Logistic分布参数

    Table  1   Logistic distribution parameters of instantaneous strength for various grain groups

    粒组/mm 20~24 24~28 28~32 32~36 36~40 40~44 44~48 48~52 52~56 56~60 120 180 240 300
    σ50/MPa 8.55 7.82 7.69 7.53 7.20 7.15 6.99 6.80 6.44 5.94 5.12 4.53 4.27 4.05
    S 5.09 6.55 6.07 4.62 4.47 4.17 4.24 4.57 5.13 3.70 4.18 4.26 3.89 7.61
    R2 0.983 0.989 0.991 0.984 0.991 0.995 0.99 0.990 0.985 0.979 0.981 0.979 0.984 0.989
    下载: 导出CSV

    表  2   亚临界裂纹扩展参数及断裂韧度

    Table  2   Subcritical crack parameters and fracture toughnesses

    编号 A n 编号 KIC/(MN·m-3/2)
    DT-1 5.50×10-11 66.82 DT-6 1.25
    DT-2 5.13×10-10 57.09 DT-7 1.20
    DT-3 1.12×10-12 56.71 DT-8 1.18
    DT-4 1.10×10-10 45.35 DT-9 1.21
    DT-5 2.19×10-10 60.48 DT-10 1.17
    均值 1.8×10-10 57.29±6.98 均值 1.20±0.028
    下载: 导出CSV

    表  3   参数的尺寸相关性模型

    Table  3   Models for size correlation of parameters

    参数名称 经验模型 R2 300 mm粒径颗粒预测误差/%
    裂纹半长/mm a0=0.24¯d+0.58 0.99 1.4
    延迟破碎时间/h tf=1.29¯d0.6 0.98 3.5
    下载: 导出CSV
  • [1] 马刚, 周伟, 常晓林, 等. 颗粒劣化效应的堆石料流变细观数值模拟[J]. 岩土力学, 2012, 33(增刊1): 257-264.

    MA Gang, ZHOU Wei, CHANG Xiaolin, et al. Meso-numerical simulation of rheological behavior of rockfill materials due to particle deterioration effect[J]. Rock and Soil Mechanics, 2012, 33(S1): 257-264. (in Chinese)

    [2]

    MA G, ZHOU W, NG T T, et al. Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model[J]. Acta Geotechnica, 2015, 10(4): 481-496. doi: 10.1007/s11440-015-0367-y

    [3]

    WANG Y J, SONG E X, ZHAO Z H. Particle mechanics modeling of the effect of aggregate shape on creep of durable rockfills[J]. Computers and Geotechnics, 2018, 98: 114-131. doi: 10.1016/j.compgeo.2018.02.013

    [4]

    ZHAO Z H, SONG E X. Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions[J]. Computers and Geotechnics, 2015, 68: 137-146. doi: 10.1016/j.compgeo.2015.04.008

    [5]

    LOBO-GUERRERO S, VALLEJO L E. Application of weibull statistics to the tensile strength of rock aggregates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 786-790. doi: 10.1061/(ASCE)1090-0241(2006)132:6(786)

    [6] 米晓飞, 迟世春. 堆石颗粒强度的尺寸效应研究[J]. 水利与建筑工程学报, 2019, 17(4): 182-187, 197. doi: 10.3969/j.issn.1672-1144.2019.04.032

    MI Xiaofei, CHI Shichun. Size effects of rockfill particle strength[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(4): 182-187, 197. (in Chinese) doi: 10.3969/j.issn.1672-1144.2019.04.032

    [7]

    MCDOWELL G R. On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139-145. doi: 10.3208/sandf.42.139

    [8]

    OVALLE C, FROSSARD E, DANO C, et al. The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data[J]. Acta Mechanica, 2014, 225(8): 2199-2216. doi: 10.1007/s00707-014-1127-z

    [9]

    ROZENBLAT Y, PORTNIKOV D, LEVY A, et al. Strength distribution of particles under compression[J]. Powder Technology, 2011, 208(1): 215-224. doi: 10.1016/j.powtec.2010.12.023

    [10]

    DELUZARCHE R, CAMBOU B. Discrete numerical modelling of rockfill dams[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(11): 1075-1096. doi: 10.1002/nag.514

    [11]

    ALAEI E, MAHBOUBI A. A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon[J]. Granular Matter, 2012, 14(6): 707-717. doi: 10.1007/s10035-012-0367-7

    [12]

    ALONSO E E, TAPIAS M, GILI J. Scale effects in rockfill behaviour[J]. Géotechnique Letters, 2012, 2(3): 155-160. doi: 10.1680/geolett.12.00025

    [13] 胡训健, 卞康, 谢正勇, 等. 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟[J]. 岩土工程学报, 2020, 42(8): 1540-1548. doi: 10.11779/CJGE202008020

    HU Xunjian, BIAN Kang, XIE Zhengyong, et al. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1540-1548. (in Chinese) doi: 10.11779/CJGE202008020

    [14] 邵磊, 迟世春, 王振兴. 基于裂缝扩展的堆石料流变细观模型[J]. 岩土工程学报, 2013, 35(1): 66-75.

    SHAO Lei, CHI Shichun, WANG Zhenxing. Rheological model for rockfill based on sub-critical crack expansion theory[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 66-75. (in Chinese)

    [15] 中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1993.

    Chinese Aeronautical Establishment. Handbook of Stress Intensity Factors[M]. Beijing: Science Press, 1993. (in Chinese)

    [16]

    SRIVASTAVA K N, DWIVEDI J P. The effect of a penny-shaped crack on the distribution of stress in an elastic sphere[J]. International Journal of Engineering Science, 1971, 9(4): 399-420. doi: 10.1016/0020-7225(71)90060-7

    [17]

    CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses[J]. Mechanics of Materials, 2000, 32(9): 543-554. doi: 10.1016/S0167-6636(00)00026-0

    [18]

    CHARLES R J. Static fatigue of glass. Ⅱ[J]. Journal of Applied Physics, 1958, 29(11): 1554-1560. doi: 10.1063/1.1722992

    [19] 王腾腾. 堆石颗粒延迟劈裂破碎时间效应研究[D]. 大连: 大连理工大学, 2022.

    WANG Tengteng. Study on Time Effect of Delayed Fracturing of Rockfill Particles[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)

    [20]

    WILLIAMS D P, EVANS A G. A simple method for studying slow crack growth[J]. Journal of Testing and Evaluation, 1973, 1(4): 264-270. doi: 10.1520/JTE10015J

    [21] 沈珠江. 土石料的流变模型及其应用[J]. 水利水运科学研究, 1994(4): 335-342.

    SHEN Zhujiang. Rheological model of soil and stone and its application[J]. Hydro-Science and Engineering, 1994(4): 335-342. (in Chinese)

    [22] 沈珠江. 鲁布革心墙堆石坝变形的反馈分析[J]. 岩土工程学报, 1994, 16(3): 1-13.

    SHEN Zhujiang. Feedback analysis of deformation of Lubuge core rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 1-13. (in Chinese)

  • 期刊类型引用(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 . 百度学术
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 . 百度学术
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 . 百度学术
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 . 百度学术
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 . 百度学术
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 . 百度学术
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 . 百度学术
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 . 百度学术
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 . 百度学术
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 . 百度学术
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 . 百度学术

    其他类型引用(2)

图(7)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-02-02
  • 网络出版日期:  2024-06-04
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回