Lunar regolith simulations with discrete element method based on Chang'E-5 mission's lunar soil particle morphology
-
摘要: 为满足当前中国探月任务中的“堪测、采、建”战略规划,获取更加贴近真实的月壤物理力学特性,考虑月壤颗粒形状的影响,结合嫦娥五号探月任务中的月壤颗粒图像,将月壤粒形特征与颗粒级配联系起来,提出考虑中国月壤粒形特征的离散元数值模拟方法。首先,基于嫦娥五号探月任务获取的部分月壤颗粒图像,对颗粒的形状特征及尺寸信息进行提取,依据其球度特征将月壤的颗粒形态分为6类,并同月壤颗粒的粒形特征与颗粒尺寸建立对应关系;其次,结合本团队开发的三维离散元月壤接触模型,引入形状参数用以表征月壤颗粒的抗转动能力,进而在离散元中考虑月壤颗粒的粒形特征,最终建立考虑中国月壤粒形特征的离散元数值模型;通过与已知月壤试验结果的对比表明,该方法可将月壤颗粒形状的可变性直接映射到离散元中。在此基础上,通过与不考虑粒形特征的数值样进行对比,探究考虑月壤粒形特征的优势。结果表明:含嫦娥五号月壤粒形特征的离散元数值模型可以有效捕捉月壤力学行为的主要特征,为开展月球资源勘探及开发利用研究提供基础。Abstract: To align with the current strategic planning of "survey, mining, and development" in China's lunar exploration mission, and to obtain more accurate physical and mechanical properties of lunar regolith, this study focuses on the influences of lunar regolith particle shape based on particle images from the lunar regolith of the Chang'E-5 mission. A discrete element numerical simulation method that considers lunar regolith particle morphology is proposed by linking particle shape characteristics with gradation. Initially, the shape characteristics and size information of the particles are extracted from the lunar regolith images. The particles are subsequently categorized into six groups based on their sphericity, establishing the corresponding relationships. Secondly, the study utilizes a three-dimensional (3D) lunar regolith contact model and calculates rolling and twisting resistances at inter-particle contact by incorporating shape parameters to account for lunar particle shape effects. Subsequently, the model considers particle size characteristics within the discrete element analysis. Ultimately, a discrete element numerical model that incorporates the particle shape characteristics of the China's lunar regolith is developed. Comparison with the results of Apollo lunar regolith laboratory tests reveals that the variability of grain shape in lunar particles can be directly incorporated into the discrete model. Additionally, the benefits of considering the grain shape characteristics of lunar regolith are discussed in comparison to numerical samples that neglect the characteristics. The results show that the proposed method can effectively capture the main characteristics of the mechanical behavior of lunar regolith, and provide a basis for the lunar resource exploration and exploitation methods.
-
致谢: 感谢中国科学院地质与地球物理研究所杨蔚研究员对本文提供的巨大帮助!感谢团队硕士生管成良、李天赐、石宵宵、杨越群在本文中提供的帮助。
-
表 1 月壤的颗粒形态分布表
Table 1 Representative particle morphologies of lunar particles
球度范围 颗粒占比/% 代表性颗粒形态 < 0.6 1.3 0.6 < < 0.7 5.8 0.7 < < 0.8 18.1 0.8 < < 0.9 39.27 0.9 < < 0.94 18.3 0.94 < < 1.0 17.18 -
[1] COSTES N C, CARRIER W D, MITCHELL J K, et al. Apollo 11 soil mechanics investigation[J]. Science, 1970, 167(3918): 739-741. doi: 10.1126/science.167.3918.739
[2] SCOTT R F, CARRIER W D, COSTES N C, et al. Apollo 12 soil mechanics investingation[J]. Géotechnique, 1971, 21(1): 1-14. doi: 10.1680/geot.1971.21.1.1
[3] JAFFE L D. Shear strength of lunar soil from Oceanus Procellarum[J]. The Moon, 1973, 8(1): 58-72.
[4] SCOTT R F. Failure[J]. Géotechnique, 1987, 37(4): 423-466. doi: 10.1680/geot.1987.37.4.423
[5] PERKO H A, NELSON J D, SADEH W Z. Surface cleanliness effect on lunar soil shear strength[J]. Journal Of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 371-383. doi: 10.1061/(ASCE)1090-0241(2001)127:4(371)
[6] CARRIER III W D. Particle size distribution of lunar soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 956-959. doi: 10.1061/(ASCE)1090-0241(2003)129:10(956)
[7] WILLMAN B M, BOLES W W, MCKAY D S, et al. Properties of lunar soil simulant JSC-1[J]. Journal of Aerospace Engineering, 1995, 8(2): 77-87. doi: 10.1061/(ASCE)0893-1321(1995)8:2(77)
[8] KLOSKY J L, STURE S, KO H, et al. Geotechnical behavior of jsc-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2000, 13(4): 133-138. doi: 10.1061/(ASCE)0893-1321(2000)13:4(133)
[9] ALSHIBLI K A, HASAN A. Strength properties of JSC-1A lunar regolith simulant[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673-679. doi: 10.1061/(ASCE)GT.1943-5606.0000068
[10] KANAMORI H, UDAGAWA S, YOSHIDA T, et al. Properties of Lunar Soil Simulant Manufactured in Japan[M]. SPACE 98, 1998: 462-468.
[11] JIANG M J, LI L Q, SUN Y G. Properties of TJ-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2012, 25(3): 463-469. doi: 10.1061/(ASCE)AS.1943-5525.0000129
[12] ZHENG Y C, WANG S J, OUYANG Z Y, et al. CAS-1 lunar soil simulant[J]. Advances In Space Research, 2009, 43(3): 448-454. doi: 10.1016/j.asr.2008.07.006
[13] 李建桥, 邹猛, 贾阳, 等. 用于月面车辆力学试验的模拟月壤研究[J]. 岩土力学, 2008, 29(6): 1557-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806025.htm LI Jianqiao, ZOU Meng, JIA Yang, et al. Lunar soil simulant for vehicle-terramechanics research in labtory[J]. Rock and Soil Mechanics, 2008, 29(6): 1557-1561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806025.htm
[14] ZHOU S, YANG Z, ZHANG R, et al. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition[J]. Acta Astronautica, 2021, 189: 90-98. doi: 10.1016/j.actaastro.2021.08.039
[15] LI R, ZHOU G, YAN K, et al. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation[J]. International Journal of Mining Science and Technology, 2022, 32(1): 1-15. doi: 10.1016/j.ijmst.2021.09.003
[16] HUANG Y, LU X, ZHAO R, et al. Three dimensional simulation of lunar dust levitation under the effect of simulated sphere body[J]. Journal of Terramechanics, 2011, 48(4): 297-306. doi: 10.1016/j.jterra.2011.06.005
[17] SOLTANBEIGI B, PODLOZHNYUK A, PAPANICOLOPULOS S. et al. DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales[J]. Powder Technology, 2018(329): 288-303.
[18] KATAGIRI J, MATSUSHIMA T, YAMADA Y, et al. Investigation of 3d grain shape characteristics of lunar soil retrieved in Apollo 16 using image-based discrete-element modeling[J]. Journal of Aerospace Engineering, 2014, 28(4): 4014092.
[19] JIANG M J, SHEN Z F, WANG J. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
[20] RORATO R, ARROYO M, GENS A, et al. Image-based calibration of rolling resistance in discrete element models of sand[J]. Computers and Geotechnics, 2021, 131: 103929. doi: 10.1016/j.compgeo.2020.103929
[21] JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116. doi: 10.1016/j.compgeo.2013.07.006
[22] 月球与深空探测科学数据与样品发布系统[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02. Lunar and Deep Space Exploration Scientific Data and Sample Release Syslem[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02. (in Chinese)
[23] YANG W, WANG Y, GAO L, et al. Sci-tech arts on Chang'e-5 lunar soil[J]. Innovation (Camb), 2022, 3(5): 100300.
[24] RORATO R, ARROYO M, GENS A, et al. Particle shape distribution effects on the triaxial response of sands: a DEM study[C]//Micro to MACRO Mathematical Modelling in Soil Mechanics, Cham, 2018.
[25] RORATO R, ARROYO M, ANDÒ E, et al. Sphericity measures of sand grains[J]. Engineering Geology, 2019, 254: 43-53. doi: 10.1016/j.enggeo.2019.04.006
[26] LI Q, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the Moon from Chang'E-5 basalts[J]. Nature, 2021, 600(7887): 54-58. doi: 10.1038/s41586-021-04100-2
[27] HE Q, LI Y, BAZIOTIS I, et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: the case of the Chang'E-5 mare basalts[J]. Icarus, 2022, 383: 115082. doi: 10.1016/j.icarus.2022.115082
[28] YANG Y, JIANG T, LIU Y, et al. A micro mid-infrared spectroscopic study of Chang'E-5 sample[J]. Journal of Geophysical Research: Planets, 2022, 127(8): e2022J-e7453J.
[29] LI J, LI Q, ZHAO L, et al. Rapid screening of Zr-containing particles from Chang'E-5 lunar soil samples for isotope geochronology: Technical roadmap for future study[J]. Geoscience Frontiers, 2022, 13(3): 101367. doi: 10.1016/j.gsf.2022.101367
[30] JIA L, CHEN Y, MAO Q, et al. Simultaneous in-situ determination of major, trace elements and Fe 3+ /∑Fe in spinel using EPMA[J]. Atomic Spectroscopy, 2022, 43(1): 42-52.
[31] ZHANG D, SU B, CHEN Y, et al. Titanium in olivine reveals low-Ti origin of the Chang'E-5 lunar basalts[J]. Lithos, 2022(414/415): 106639.
[32] LI C, LI Y, WEI K X. Study on surface characteristics of Chang'E-5 fine grained lunar soil[J]. Scientia SInica Physica, Mechanica & Astronomica, 2022: 50: 1-10.
[33] JI J, HE H, HU S, et al. Magmatic chlorine isotope fractionation recorded in apatite from Chang'e-5 basalts[J]. Earth and Planetary Science Letters, 2022(591): 117636.
[34] LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang'E-5 mission[J]. Natl Sci Rev, 2022, 9(2): 1-13.
[35] ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by Chang'E-5 mission[J]. Science China (Physics, Mechanics & Astronomy), 2022, 65(2): 106-113.
[36] BARDET J P. Observations on the effects of particle rotations on the failure of idealized granular materials[J]. Mechanics of materials, 1994, 18(2): 159-182. doi: 10.1016/0167-6636(94)00006-9
[37] 蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001 JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
[38] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
[39] HEYWOOD H. Particle size and shape distribution for lunar fines sample 12057, 72[C]//Proceedings of the Lunar Science Conference, Houston, 1971.
[40] JIANG M J, YU H, HARRIS D. Kinematic variables bridging discrete and continuum granular mechanics[J]. Mechanics Research Communications, 2006, 33(5): 651-666. doi: 10.1016/j.mechrescom.2005.06.013
[41] THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43
-
期刊类型引用(13)
1. 张沛杰,王展亮. 石灰和水泥改良软土力学性能及水稳定性研究. 湖南工程学院学报(自然科学版). 2025(01): 79-87 . 百度学术
2. 罗跃春,甘展孜,曾新雄,王宁伟. 珠江口西岸滨海区软土属性分析. 土工基础. 2024(02): 239-242 . 百度学术
3. 宋许根. 广州南沙某深厚软土区综合管廊基坑变形破坏分析. 岩石力学与工程学报. 2023(S1): 3629-3642 . 百度学术
4. 蔡子勇,乔世范,檀俊坤,刘屹颀. 南沙港区深厚淤泥软土特性及空间异性研究. 地下空间与工程学报. 2023(03): 897-910 . 百度学术
5. 李天降,朱孟君,王哲,宋许根,甄洁,衣凡,雷华阳,郑刚,程雪松. 软土区管廊基坑柔性支护下基坑变形控制标准. 科学技术与工程. 2023(21): 9199-9206 . 百度学术
6. 田琦,陈国垚,王伟,史宗刚,刘红位. 福建沿海原状软土力学特性试验研究. 水利与建筑工程学报. 2023(05): 78-84 . 百度学术
7. 裘友强,张留俊,富志鹏,刘军勇,张微,王超. 内陆河湖相软土土性指标统计特征与竖向变化规律研究. 水利水电技术(中英文). 2023(12): 23-34 . 百度学术
8. 刘彬,徐苏静,张四俊,惠海鹏,居俊. 沿海地区深厚软土工程力学特性分析. 江苏建筑. 2022(03): 101-104 . 百度学术
9. 罗维高,林惠庭,章志,卢荣富,施雨,周晓敏. 大直径超长距离钢顶管施工技术应用分析. 广东土木与建筑. 2022(08): 71-75 . 百度学术
10. 李治斌,党星海,蔡明祥,赵健赟,郁林,李先怡. 基于PSInSAR技术的珠海市地表沉降监测与归因分析. 自然灾害学报. 2021(01): 38-46 . 百度学术
11. 戴巍,陈智超,冯青山,麦凌威,祝敏刚. 木质纤维与水泥共同改良软土的力学性能与微观机制分析. 水力发电. 2021(03): 121-125 . 百度学术
12. 陆惠平,朱挻,刘泽,何矾,李洪. 绍兴淤泥质软土工程特性. 建筑技术开发. 2021(15): 155-157 . 百度学术
13. 刘维正,葛孟源,李天雄. 南沙海相软土工程特性原位测试对比与统计规律分析. 岩土工程学报. 2021(S2): 267-275 . 本站查看
其他类型引用(9)
-
其他相关附件