Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

泸定水电站坝基覆盖层深部潜蚀对土骨架变形影响评价试验研究

金伟, 邱子源, 张丹, 向雷, 杨林骏, 罗玉龙

金伟, 邱子源, 张丹, 向雷, 杨林骏, 罗玉龙. 泸定水电站坝基覆盖层深部潜蚀对土骨架变形影响评价试验研究[J]. 岩土工程学报, 2024, 46(4): 705-715. DOI: 10.11779/CJGE20230034
引用本文: 金伟, 邱子源, 张丹, 向雷, 杨林骏, 罗玉龙. 泸定水电站坝基覆盖层深部潜蚀对土骨架变形影响评价试验研究[J]. 岩土工程学报, 2024, 46(4): 705-715. DOI: 10.11779/CJGE20230034
JIN Wei, QIU Ziyuan, ZHANG Dan, XIANG Lei, YANG Linjun, LUO Yulong. Experimental study and evaluation on influence of deep alluvium foundation suffusion on deformation of soil skeleton in foundation of Luding Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 705-715. DOI: 10.11779/CJGE20230034
Citation: JIN Wei, QIU Ziyuan, ZHANG Dan, XIANG Lei, YANG Linjun, LUO Yulong. Experimental study and evaluation on influence of deep alluvium foundation suffusion on deformation of soil skeleton in foundation of Luding Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 705-715. DOI: 10.11779/CJGE20230034

泸定水电站坝基覆盖层深部潜蚀对土骨架变形影响评价试验研究  English Version

基金项目: 

国家自然科学基金项目 51679070

国家重点研发计划项目 2017YFC1502603

中国科学院青海盐湖研究所基础研究青年创新交叉团队项目 islJCTD-2022-2

湖南省水利科技项目 XSKJ2021000-35

湖南省水利科技项目 XSKJ2022068-37

详细信息
    作者简介:

    金伟(1972—),男,教授级高级工程师,中国电建集团成都勘测设计研究院副总工程师,河海大学兼职博士生导师,主要从事高坝大型结构的设计和科研工作。E-mail: 2005008@chidi.com.cn

    通讯作者:

    罗玉龙, E-mail: lyl8766@hhu.edu.cn

  • 中图分类号: TU443

Experimental study and evaluation on influence of deep alluvium foundation suffusion on deformation of soil skeleton in foundation of Luding Hydropower Station

  • 摘要: 泸定水电站因坝基覆盖层深部①层潜蚀诱发涌水险情,潜蚀过程中大量细颗粒持续流失能否诱发明显土骨架变形关系到电站自身、下游梯级电站及泸定县城的安全。土体颗粒级配、应力状态及细颗粒流失比例等均有可能影响土骨架变形,但其影响机制尚不清楚。为全面评价①层潜蚀对土骨架变形的影响,自行研制了可以模拟现场①层土体原始级配特征和应力状态的高应力、大直径的土体渗透稳定试验装置,建立了土骨架发生明显变形的判据,即潜蚀过程中试样累计体积应变大于等于1%时,表明土骨架已发生明显变形,提出了细颗粒运移比作为衡量细颗粒流失比例的评价指标。针对①层土体,开展了一系列极端不利水力条件下的渗流应力耦合潜蚀试验研究,重点探讨了颗粒级配、应力状态及细颗粒运移比对土骨架变形的影响规律。研究表明:所有试样潜蚀全过程的累计体积应变介于0.1%~0.49%,均小于1%,即①层土体中细颗粒大量甚至全部流失也不会诱发明显骨架变形,①层潜蚀诱发防渗墙开裂、折断,甚至突然溃坝的风险不大。颗粒级配显著影响细颗粒运移比、潜蚀临界和破坏坡降,5 mm以下颗粒含量越少,细颗粒运移比越大,潜蚀临界和破坏坡降越小;上覆压力对细颗粒运移比影响不大,但对潜蚀临界和破坏坡降影响显著,上覆压力越大,潜蚀临界和破坏坡降越大。研究成果为科学评价泸定水电站深部渗透稳定提供了重要依据,同时,也为其他类似工程安全评价提供了重要借鉴。
    Abstract: Suffusion of stratum ① in deep alluvium foundation of Luding Hydropower Station induces water gushing incident. Continuous migration of fine particles may induce skeleton deformation, and then it may threat the safety of Luding Dam, downstream cascade hydropower stations and Luding County. Particle size distribution of soil, stress and loss of fine particles may affect the skeleton deformation, but the detailed influence mechanism is not clear. In order to evaluate the influences of stratum ① suffusion on the skeleton deformation, a new high stress and large diameter soil suffusion apparatus which can simulate the stress and the characteristics of stratum ① particle size distribution is designed, and a criterion distinguishing the obvious skeleton deformation is proposed. When the volumetric strain during suffusion is greater than or equal to 1%, it indicates that the obvious skeleton deformation occurs. A new evaluation index called migration ratio of fine particles is proposed to weigh the loss of fine particles. A list of hydro-mechanical coupling suffusion tests under the extreme adverse hydraulic conditions are performed on stratum ① soil to investigate the influences of particle size distributions, stresses and losses of fine particles on the skeleton deformation. The results indicate that the cumulative volumetric strains during suffusion of all specimens range from 0.1% to 0.49%, and are lower than 1%, indicating that significant losses of fine particles in stratum ① soil do not induce obvious skeleton deformation, and suffusion of stratum ① soil cannot induce the cracks and breaking off of concrete cutoff wall and sudden dam break. The particle size distributions significantly affect the migration ratio of fine particles, hydraulic gradients initiating suffusion and failure. The less the percentage of finer than 5 mm, the larger the migration ratio of fine particles, and the lower the hydraulic gradients initiating suffusion and failure. The overburden pressure has a slight influence on the migration ratio of fine particles, but it significantly affects the hydraulic gradients initiating suffusion and failure. The larger the pressure, the larger the hydraulic gradients. The results may provide an important basis for the evaluation of deep seepage stability of Luding Dam, and an important reference for other similar projects.
  • 图  1   泸定水电站防渗墙端部附近潜蚀

    Figure  1.   Suffusion at bottom of cutoff wall in deep alluvium foundation of Luding Hydropower Station

    图  2   泸定水电站坝基①层原始级配包络线

    Figure  2.   Grain-size distribution curves of stratum ① soil

    图  3   ① 层土体原始级配与等量替代后颗粒级配对比

    Figure  3.   Comparison between original and equivalent substitution grain-size distributions of stratum ① soil

    图  4   高应力、大直径土体渗透稳定试验装置

    Figure  4.   High stress and large-diameter soil suffusion apparatus

    图  5   ① 层平均线土体试验填筑情况

    Figure  5.   Compaction of stratum ① soil

    图  6   试验①-4的lgi-lgv曲线

    Figure  6.   lgi-lgv of Test ①-4

    图  7   粒径5 mm以下颗粒含量与潜蚀特征坡降的关系

    Figure  7.   Relationship between percentage finer than 5 mm and suffusion hydraulic gradients

    图  8   ① 层土体所处应力状态与潜蚀特征坡降的关系

    Figure  8.   Relationship between overburden pressure and suffusion hydraulic gradient

    表  1   试验土体内部稳定性评价

    Table  1   Evaluation of internal instability of test soils

    土体颗粒级配曲线 内部稳定性评价结果
    Kenney等[2] Wan等[3] Li等[4]
    ①层上包-平均线 内部不稳定((H/F)min=0.64 < 1) 内部不稳定(P=99.7%) 内部不稳定(当F > 15%时, H =10.8% < 15%)
    ①层平均线 内部不稳定((H/F)min=0.51 < 1) 内部不稳定(P=98.9%) 内部不稳定(当F < 15%时, (H/F)min=0.91 < 1.0;当F > 15%时, H=10.1% < 15%)
    ①层下包-平均2线 内部不稳定((H/F)min=0.38 < 1) 内部不稳定(P=99%) 内部不稳定(当F < 15%时, (H/F)min=0.86 < 1.0;当F > 15%时, H=6% < 15%)
    ①层下包-平均1线 内部不稳定((H/F)min=0.41 < 1) 内部不稳定(P=96.6%) 内部不稳定(当F < 15%时, (H/F)min=0.69 < 1.0;当F > 15%时, H=8.2% < 15%)
    ①层下包线 内部不稳定((H/F)min=0.51 < 1) 内部不稳定(P=90.2%) 内部不稳定(当F < 15%时, (H/F)min=0.93 < 1.0;当F > 15%时, H=8% < 15%)
    下载: 导出CSV

    表  2   ① 层土体潜蚀试验组合

    Table  2   Suffusion tests of stratum ① soil

    试验编号 上覆压力/MPa ①层土体
    级配曲线 ρd/(g·cm-3) Dr
    ①-1 2.0 ①层平均线 2.241 0.85
    ①-2 ①层下包线 2.106 0.85
    ①-3 ①层上包-平均线 2.308 0.85
    ①-4 ①层下包-平均1线 2.204 0.85
    ①-5 ①层下包-平均2线 2.268 0.85
    ①-6 0.5 ①层平均线 2.241 0.85
    ①-7 1.0
    ①-8 1.5
    ①-9 2.5
    下载: 导出CSV

    表  3   部分相关文献潜蚀试验成果统计

    Table  3   Suffusion test results in literatures

    文献 试验土样编号 试验类型 颗粒流失诱发的体积应变/% 是否发生明显骨架变形
    Li[26] FR8-25-D0 有侧限试验 2.6
    FR8-25-D1 0.9
    FR8-25-D2 1.6
    FR8-50-D 0.7
    FR8-100-D 4.7
    FR8-200-D 3.9
    FR7-25-D 3.4
    FR7-50-D 0.98
    FR7-100-D 1.6
    FR7-150-D 0.6
    FR7-150-U 3.0
    HF03-25-U 0.23
    HF03-50-U 0.14
    Moffat等[27] T-0-25-D 有侧限试验 7.0
    T-5-175-U 5.0
    C-20-50-U 1.0
    C-30-80-U 2.4
    Ke等[18] 35E-50 无侧限试验 2.4(轴向应变)
    3.9(体积应变)
    35E-50-R 3.8
    35E-100 2.0(轴向应变)
    3.2(体积应变)
    35E-100-R 3.6
    35E-200 1.8(轴向应变)
    2.8(体积应变)
    35E-200-R 2.8
    25E-50 1.4
    15E-50 0.05
    Chang等[19] GS-C-6 无侧限试验 6.5(轴向应变),未给出体积应变
    GS-I-1 0.14(轴向应变)
    0.26(体积应变)
    Sibille等[20] Test N1 有侧限试验 3.9
    Test N2 4.9
    Test N3 5.0
    Test N4 7.7
    Test N5 5.7
    Test N6 4.8
    Test N7 3.9
    Test N8 1.7
    Slangen等[21] 6.0GB35-100 无侧限试验 0.62(轴向应变)
    1.54(体积应变)
    6.0GB35-100(R) 0.7(轴向应变)
    2.19(体积应变)
    6.5GB35-50 0.14(轴向应变)
    1.89(体积应变)
    6.5GB35-100 0.04(轴向应变)
    1.68(体积应变)
    4.8GB20-50 0(轴向应变)
    0.12(体积应变)
    4.8GB20-50(R) 0.01(轴向应变)
    0.03(体积应变)
    Prasomsri等[22] WE_F32.5 无侧限试验 1.15
    WE_F35 0.09(轴向应变)
    0.74(体积应变)
    WE_F15 0.01
    WE_F20 0.02
    WE_F25 0.01
    WE_F30 0.01
    田大浪等[28] G-US-30 有侧限试验 0.83
    G-US-35 0.57
    G-US-40 1.47
    G-CS-30 0.51
    G-CS-35 0.32
    G-CS-40 0.93
    樊茹玉[29] B3-35 有侧限试验 0.04
    C5-15 0.02
    C7-20 0.01
    C8-20 0.01
    D9-30 0.1
    D12-25 0.01
    A1-15 0
    B2-20 0
    C4-15 0
    C6-10 0.01
    D10-5 0
    D11-15 0
    下载: 导出CSV

    表  4   ① 层土体潜蚀试验成果统计

    Table  4   Suffusion test results of stratum ① soil

    试验编号 土体名称 上覆压力/MPa icr if k/(cm·s-1) 细颗粒运移比/% εv/% ϵv/% ϵvϵv/% 是否发生骨架变形 最大平均/局部坡降
    ①-1 ①层上包-平均线 2.0 2.41 4.81 6.0×10-5 5.4 2.4 0.27 11.25 16.5/95.1
    ①-2 ①层平均线 2.0 1.88 3.57 1.4×10-3 7.1 3.8 0.20 5.26 16.7/22.5
    ①-3 ①层下包-平均2线 2.0 0.82 2.17 1.0×10-2 11.5 2.6 0.49 18.85 15.6/48.8
    ①-4 ①层下包-平均1线 2.0 0.47 1.70 1.4×10-1 40.6 4.3 0.10 2.33 13.2/35.1
    ①-5 ①层下包线 2.0 0.06 1.19 1.9 43.3 4.3 0.16 3.72 1.2/7.4
    ①-6 ①层平均线 0.5 0.16 0.55 5.6×10-2 15.8 1.1 0.20 17.70 4.2/17.6
    ①-7 ①层平均线 1.0 0.54 1.46 1.1×10-2 10.6 2.5 0.20 7.91 3.6/38.4
    ①-8 ①层平均线 1.5 1.09 2.06 2.2×10-3 15.8 2.5 0.15 6.12 4.4/20.1
    ①-9 ①层平均线 2.5 2.08 3.93 1.2×10-3 18.1 4.5 0.25 5.57 4.4/15.4
    下载: 导出CSV
  • [1] 罗玉龙, 张兴杰, 张海彬, 等. 深厚覆盖层地基潜蚀研究综述[J]. 岩土力学, 2022, 43(11): 3094-3106. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202211016.htm

    LUO Yulong, ZHANG Xingjie, ZHANG Haibin, et al. Review of suffusion in deep alluvium foundation[J]. Rock and Soil Mechanics, 2022, 43(11): 3094-3106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202211016.htm

    [2]

    KENNEY T C, LAU D. Internal stability of granular filters [J]. Canadian Geotechnical Journal, 1985, 22(2): 215-225. doi: 10.1139/t85-029

    [3]

    WAN C F, FELL R. Assessing the potential of internal instability and suffusion in embankment dams and their foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(3): 401-407. doi: 10.1061/(ASCE)1090-0241(2008)134:3(401)

    [4]

    LI M, FANNIN R J. Comparison of two criteria for internal stability of granular soil[J]. Canadian Geotechnical Journal, 2008, 45(9): 1303-1309. doi: 10.1139/T08-046

    [5] 陈群, 刘黎, 何昌荣, 等. 缺级粗粒土管涌类型的判别方法[J]. 岩土力学, 2009, 30(8): 2249-2253. doi: 10.3969/j.issn.1000-7598.2009.08.008

    CHEN Qun, LIU Li, HE Changrong, et al. Criterion of piping types for gap-graded coarse-grained soils[J]. Rock and Soil Mechanics, 2009, 30(8): 2249-2253. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.08.008

    [6] 蒋中明, 王为, 冯树荣, 等. 砂砾石土渗透变形特性的应力状态相关性试验研究[J]. 水利学报, 2013, 44(12): 1498-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201312016.htm

    JIANG Zhongming, WANG Wei, FENG Shurong, et al. Experimental of study on the relevance between stress state and seepage failure of sandy-gravel soil[J]. Journal of Hydraulic Engineering, 2013, 44(12): 1498-1505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201312016.htm

    [7]

    CHANG D S, ZHANG L M. Critical hydraulic gradients of internal erosion under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1454-1467. doi: 10.1061/(ASCE)GT.1943-5606.0000871

    [8] 姚志雄, 周健, 张刚, 等. 颗粒级配对管涌发展的影响试验研究[J]. 水利学报, 2016, 47(2): 200-208, 218. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602010.htm

    YAO Zhixiong, ZHOU Jian, ZHANG Gang, et al. Experimental study of particle grading impact on piping mechanism[J]. Journal of Hydraulic Engineering, 2016, 47(2): 200-208, 218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602010.htm

    [9]

    LIANG Y, YEH T C J, WANG J, et al. Onset of suffusion in upward seepage under isotropic and anisotropic stress conditions[J]. European Journal of Environmental & Civil Engineering, 2019, 23(12): 1520-1534.

    [10]

    LUO Y L, LUO B, XIAO M. Effect of deviator stress on the initiation of suffusion[J]. Acta Geotechnica, 2020, 15(6): 1607-1617. doi: 10.1007/s11440-019-00859-x

    [11] 水电水利工程土工试验规程: DL/T 5355—2006[S]. 北京: 中国电力出版社, 2007.

    Code for Soil Tests for Hydropower and Water Conservancy Engineering: DL/T 5355—2006[S]. Beijing: Chinese Electric Power Publishing House, 2007. (in Chinese)

    [12] 谢定松, 蔡红, 魏迎奇, 等. 覆盖层不良级配砂砾石料渗透稳定特性及影响因素探讨[J]. 水利学报, 2014, 45(增刊2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2013.htm

    XIE Dingsong, CAI Hong, WEI Yingqi, et al. Discussion of seepage stability characteristic of bad graded sand and gravel overlay[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2013.htm

    [13]

    CHEN C, ZHANG L M, PEI L, et al. Soil deformations induced by particle removal under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020085. doi: 10.1061/(ASCE)GT.1943-5606.0002342

    [14] 谷敬云, 罗玉龙, 张兴杰, 等. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用[J]. 岩石力学与工程学报, 2021, 40(6): 1287-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm

    GU Jingyun, LUO Yulong, ZHANG Xingjie, et al. A suffusion visualization apparatus based on planar laser induced fluorescence and the preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1287-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm

    [15] 陈亮, 滕耀宗, 蔡国栋, 等. 变水头下管涌细颗粒迁移试验[J]. 河海大学学报(自然科学版), 2022, 50(5): 82-88, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202205011.htm

    CHEN Liang, TENG Yaozong, CAI Guodong, et al. Experimental study on the migration of fine particles in piping under variable water head[J]. Journal of Hohai University (Natural Sciences), 2022, 50(5): 82-88, 110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202205011.htm

    [16] 康捷, 任杰, 南胜豪, 等. 形状效应下砂土管涌试验及水力条件分析[J]. 水力发电学报, 2023, 42(5): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202305010.htm

    KANG Jie, REN Jie, NAN Shenghao, et al. Sand piping tests and hydraulic condition analysis with particle shape effect[J]. Journal of Hydroelectric Engineering, 2023, 42(5): 97-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202305010.htm

    [17]

    DENG G, ZHANG L L, CHEN R, et al. Experimental investigation on suffusion characteristics of cohesionless soils along horizontal seepage flow under controlled vertical stress[J]. Frontiers in Earth Science, 2020, 8: 1-9. doi: 10.3389/feart.2020.00001

    [18]

    KE L, TAKAHASHI A. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil[J]. Soils and Foundations, 2014, 54(4): 713-730. doi: 10.1016/j.sandf.2014.06.024

    [19]

    CHANG D, ZHANG L, CHEUK J. Mechanical consequences of internal soil erosion[J]. HKIE Transactions, 2014, 21(4): 198-208. doi: 10.1080/1023697X.2014.970746

    [20]

    SIBILLE L, MAROT D, SAIL Y. A description of internal erosion by suffusion and induced settlements on cohesionless granular matter[J]. Acta Geotechnica, 2015, 10(6): 735-748. doi: 10.1007/s11440-015-0388-6

    [21]

    SLANGEN P, FANNIN R J. A flexible wall permeameter for investigating suffusion and suffosion[J]. Geotechnical Testing Journal, 2017, 40(1): 1-14. doi: 10.1520/GTJ20150287

    [22]

    PRASOMSRI J, TAKAHASHI A. The role of fines on internal instability and its impact on undrained mechanical response of gap-graded soils [J]. Soils and Foundations, 2020, 60(6): 1468-1488. doi: 10.1016/j.sandf.2020.09.008

    [23] 谢定松, 蔡红, 魏迎奇, 等. 粗粒土渗透试验缩尺原则与方法探讨[J]. 岩土工程学报, 2015, 37(2): 369-373. doi: 10.11779/CJGE201502023

    XIE Dingsong, CAI Hong, WEI Yingqi, et al. Scaling principle and method in seepage tests on coarse materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 369-373. (in Chinese) doi: 10.11779/CJGE201502023

    [24] 朱国胜, 张家发, 陈劲松, 等. 宽级配粗粒土渗透试验尺寸效应及边壁效应研究[J]. 岩土力学, 2012, 33(9): 2569-2574. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209006.htm

    ZHU Guosheng, ZHANG Jiafa, CHEN Jinsong, et al. Study of size and wall effects in seepage test of broadly graded coarse materials[J]. Rock and Soil Mechanics, 2012, 33(9): 2569-2574. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209006.htm

    [25] 张丹, 邱子源, 金伟, 等. 粗粒土渗透及渗透变形试验缩尺方法研究[J]. 岩土力学, 2024, 45(1): 164-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202401015.htm

    ZHANG Dan, QIU Ziyuan, JIN Wei, et al. Study on scale method of coarse soils seepage and seepage stability test[J]. Rock and Soil Mechanics, 2024, 45(1): 164-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202401015.htm

    [26]

    LI M. Seepage Induced Instability in Widely Graded Soils[D]. Vancouver BC: University of British Columbia, 2008.

    [27]

    MOFFAT R M, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil [J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071

    [28] 田大浪, 谢强, 宁越, 等. 间断级配砂砾石土的渗透变形试验研究[J]. 岩土力学, 2020, 41(11): 3663-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011017.htm

    TIAN Dalang, XIE Qiang, NING Yue, et al. Experimental investigation on seepage deformation of gap-graded sand-gravel soils[J]. Rock and Soil Mechanics, 2020, 41(11): 3663-3670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011017.htm

    [29] 樊茹玉. 潜蚀发生后可诱发不均匀沉降的内部不稳定土体的颗粒级配特征研究[D]. 南京: 河海大学, 2021.

    FAN Ruyu. Study on Grain Size Distribution Characteristics of Internally Unstable Soil Causing Non-Uniform Settlement after Suffusion[D]. Nanjing: Hohai University, 2021. (in Chinese)

图(8)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-08
  • 网络出版日期:  2024-04-09
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回