Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同场地条件下埋地腐蚀钢管地震易损性评价

韩俊艳, 李玉凤, 钟紫蓝, 缪惠全, 杜修力

韩俊艳, 李玉凤, 钟紫蓝, 缪惠全, 杜修力. 不同场地条件下埋地腐蚀钢管地震易损性评价[J]. 岩土工程学报, 2024, 46(4): 774-783. DOI: 10.11779/CJGE20230033
引用本文: 韩俊艳, 李玉凤, 钟紫蓝, 缪惠全, 杜修力. 不同场地条件下埋地腐蚀钢管地震易损性评价[J]. 岩土工程学报, 2024, 46(4): 774-783. DOI: 10.11779/CJGE20230033
HAN Junyan, LI Yufeng, ZHONG Zilan, MIAO Huiquan, DU Xiuli. Seismic vulnerability assessment of buried corroded steel pipes under different site conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 774-783. DOI: 10.11779/CJGE20230033
Citation: HAN Junyan, LI Yufeng, ZHONG Zilan, MIAO Huiquan, DU Xiuli. Seismic vulnerability assessment of buried corroded steel pipes under different site conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 774-783. DOI: 10.11779/CJGE20230033

不同场地条件下埋地腐蚀钢管地震易损性评价  English Version

基金项目: 

北京市自然科学基金项目 8212005

国家自然科学基金项目 52220105011

国家自然科学基金项目 51978020

详细信息
    作者简介:

    韩俊艳(1983—),女,副教授,硕士生导师,主要从事地下结构抗震方面的研究工作。E-mail:junyanhan@bjut.edu.cn

    通讯作者:

    钟紫蓝, E-mail: zilanzhong@bjut.edu.cn

  • 中图分类号: TU435

Seismic vulnerability assessment of buried corroded steel pipes under different site conditions

  • 摘要: 为评估不同场地中埋地腐蚀管道的抗震性能,建立管-土非线性相互作用分析模型,基于增量动力时程分析方法,以埋地钢管结构应变为性能参数,对不同场地中埋地腐蚀管道的地震易损性进行了分析。结果表明:同一场地条件和服役龄期下,随地震动强度的增大,管道处于基本完好状态的概率逐渐降低,处于严重破坏状态的概率逐渐增加;同一场地条件下,随管道服役龄期的延长,中等损坏极限的曲线斜率增长明显大于基本完好极限的曲线斜率,但管道失效的速率在逐渐变小,软弱场地中服役龄期50 a管道在抗震设防烈度8度时已发生中等损坏;同一地震动强度和服役龄期下,随场地等效剪切波速的减小,管道达到基本完好极限、中等损坏极限的失效概率逐渐增大,软弱场地中失效概率最大;同一服役龄期下,随场地等效剪切波速的减小,管道达到中等损坏、严重破坏的地震动峰值加速度明显降低,较低地震烈度下的软弱场地管道震害甚至高于较高地震烈度下的坚硬场地。本研究可为不同场地中埋地腐蚀管道的震害预测及灾后损失评估提供参考。
    Abstract: A nonlinear interaction analysis model for pipelines and soils is established to evaluate the anti-seismic performance of corroded steel pipes buried in different sites. Based on the incremental dynamic time-history analysis method, the seismic vulnerability of corroded steel pipes in different sites is analyzed by taking the structural strain of buried steel pipes as the performance parameter. The results show that under the same site condition and service age, the probability of pipelines in a basically intact state decreases gradually, while that in a seriously damaged state increases gradually with the increase of earthquake intensity. Under the same site condition, the slope of the curve of moderately damaged limit becomes significantly larger than that of the curve of basic ally intact limit, but the failure rate of pipelines decreases gradually with the increase of their service age. In the weak site, the pipelines with 50 years of service age are moderately damaged when the seismic fortification intensity is 8 degrees. Under the same earthquake intensity and service age, the failure probability of the pipelines that reaches the basically intact limit and moderately damaged limit gradually increases with the decrease of the site equivalent shear wave velocity. The failure probability is the highest in the weak field. Under the same service age, the peak acceleration of ground motion that the pipelines reach the moderate damage or severe damage decreases obviously with the decrease of the site equivalent shear wave velocity. The damage of pipelines in soft field at lower seismic intensity is even higher than that in hard field at higher seismic intensity. This study may provide reference for the earthquake damage prediction and post-disaster loss assessment of buried corroded pipelines in different sites.
  • 图  1   管道模型示意图

    Figure  1.   Schematic diagram of pipeline model

    图  2   土弹簧和管的本构模型

    Figure  2.   Constitutive models for soil springs and pipelines

    图  3   不同地震动作用下数据对比

    Figure  3.   Comparison of data under different ground motions

    图  4   地震动加速度反应谱

    Figure  4.   Acceleration response spectra of ground motion

    图  5   不同场地下各服役龄期管道应变IDA曲线簇

    Figure  5.   IDA curve clusters of pipeline strain at different service ages under each site condition

    图  6   不同场地下各服役龄期管道地震易损性曲线

    Figure  6.   Seismic vulnerability curves of pipelines at different service ages under each site condition

    图  7   管道中等损坏和严重破坏对应的PGA值

    Figure  7.   PGA values corresponding to moderate damage and severe damage of pipelines

    图  8   不同场地下各服役龄期管道失效概率增长值

    Figure  8.   Growth values of failure probability of pipelines at different service ages under each site condition

    表  1   非线性土弹簧单位长度的初始刚度和相应的位移

    Table  1   Initial stiffnesses per unit length and corresponding displacements of nonlinear soil spring

    埋深/m 土体类型 参数 轴向
    1.88 坚硬土 Tu 6.336×105
    xu 0.003
    中硬土 Tu 7.23×105
    xu 0.005
    中软土 Tu 2.01×106
    xu 0.008
    软弱土 Tu 2.442×106
    xu 0.01
    注:Tu表示初始刚度(N/m);xu表示对应位移(m)。
    下载: 导出CSV

    表  2   管道参数

    Table  2   Parameters of pipelines

    材质 外径/mm 单位重量/(kg·m-3) 弹性模量/GPa 壁厚/mm 屈服强度/MPa 极限强度/MPa
    API 5L-X65 762 7850 210 17.5 450 535
    下载: 导出CSV

    表  3   不同服役龄期下埋地管道的几何与力学性能参数

    Table  3   Geometrical and mechanical property parameters of buried pipelines under different service ages

    服役龄期/a 失重率/Dw E1/GPa ε1 σ1/MPa E2/GPa ε2 σ2/MPa 管半径/m 壁厚/m
    0~20 0 210.0 0.00214 450 21.00 0.02548 535 0.3810 0.0175
    30 0.244 162.0 0.00211 342 16.20 0.02590 420 0.3768 0.0133
    40 0.486 115.0 0.00204 235 11.50 0.02665 306 0.3726 0.0091
    50 0.725 68.3 0.00189 129 6.83 0.02843 194 0.3684 0.0049
    下载: 导出CSV

    表  4   埋地连续管道地震损伤指标

    Table  4   Seismic damage indices of buried continuous pipelines

    性能水准 性能要求 管道应变
    基本完好 管道可能有轻微变形,无破损,无渗漏,无需修复即可正常运行 ε<ε1
    中等损坏 管道即将发生较大变形或者屈曲,或有轻度破损,有渗漏,需采取修理措施才能正常运行 ε1<ε<ε2
    严重破坏 管道破裂,必须更换管道 ε>ε2
    下载: 导出CSV

    表  5   抗震设防烈度9度的埋地管道地震失效概率

    Table  5   Seismic damage probability of buried pipeline with seismic fortification intensity of 9 degrees

    场地条件 坚硬土 中硬土
    服役龄期 0~20 a 30 a 40 a 50 a 0~20 a 30 a 40 a 50 a
    失效概率P 中等损坏 7.18% 7.77% 7.90% 7.96% 21.45% 28.34% 32.56% 34.36%
    严重破坏 0.13% 0.14% 0.15% 0.15% 0.71% 1.60% 2.48% 2.59%
    场地条件 中软土 软弱土
    服役龄期 0~20 a 30 a 40 a 50 a 0~20 a 30 a 40 a 50 a
    失效概率P 中等损坏 49.53% 54.29% 57.44% 59.90% 60.66% 66.26% 69.44% 72.37%
    严重破坏 5.58% 7.45% 8.26% 8.69% 9.05% 12.09% 13.61% 14.76%
    下载: 导出CSV
  • [1] 张杰. 腐蚀管道结构可靠性评价与维修策略优化[D]. 北京: 中国石油大学, 2020.

    ZHANG Jie. Structural Reliability Evaluation and Maintenance Strategy Optimization of Corroded Pipelines[D]. Beijing: China University Of Petroleum, 2020. (in Chinese)

    [2]

    BAI X L, HE B, HAN P J, et al. Corrosion behavior and mechanism of X80 steel in silty soil under the combined effect of salt and temperature[J]. RSC Advances, 2022, 12: 129-147. doi: 10.1039/D1RA08249C

    [3] 马晓凤. 埋地保温管道腐蚀原因分析和腐蚀机理研究[D]. 西安: 西安石油大学, 2021.

    MA Xiaofeng. Corrosion Cause Analysis and Corrosion Mechanism Research of Buried Thermal Insulation Pipeline[D]. Xi'an: Xi'an Shiyou University, 2021. (in Chinese)

    [4]

    WANG Y H, ZHANG P, QIN G J. Reliability assessment of pitting corrosion of pipeline under spatiotemporal earthquake including spatial-dependent corrosion growth[J]. Process Safety and Environmental Protection, 2021, 148: 166-178. doi: 10.1016/j.psep.2020.10.005

    [5] 方卓钰, 董绍华, 段宇航. 含双点腐蚀缺陷海底管道剩余强度及失效分析[C]// 2021 IPPTC国际石油石化技术会议论文集, 北京, 2021: 546-558.

    FANG Zhuoyu, DONG Shaohua, DUAN Yuhang. Residual strength and failure analysis of submarine pipeline with double pitting corrosion defects[C]// Proceedings of 2021IPPTC International Petroleum and Petrochemical Technology Conference, Beijing, 2021: 546-558. (in Chinese)

    [6]

    ARUMUGAM T, KARUPPANAN S, OVINIS M. Finite element analyses of corroded pipeline with single defect subjected to internal pressure and axial compressive stress[J]. Marine Structures, 2020, 72(C): 1-21.

    [7]

    AMANDI K U, DIEMUODEKE E O, BRIGGS T A. Model for remaining strength estimation of a corroded pipeline with interacting defects for oil and gas operations[J]. Cogent Engineering, 2019, 6(1): 1-9.

    [8]

    MOHSEN A, REZA B M. A new approach for finite element based reliability evaluation of offshore corroded pipelines[J]. International Journal of Pressure Vessels and Piping, 2021, 193: 1-13.

    [9]

    ZHANG W, SHOKRABADI M, BOZORGNIA Y, et al. A methodology for fragility analysis of buried water pipes considering coupled horizontal and vertical ground motions[J]. Computers and Geotechnics, 2020, 126: 1-22.

    [10] 王书锐. 垫衬法加固前后地下供水管道抗震易损性分析[D]. 北京: 北京工业大学, 2019.

    WANG Shurui. Seismic Vulnerability Analysis of Underground Water Supply Pipes Before and After Reinforcement by Cushion Lining Method[D]. Beijing: Beijing University of Technology, 2019. (in Chinese)

    [11] 贺金川, 韩峰, 郑山锁, 等. 酸性土壤环境中多龄期埋地钢管地震易损性分析[J]. 天津大学学报, 2020, 53(9): 881-889. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202009001.htm

    HE Jinchuan, HAN Feng, ZHENG Shansuo, et al. Seismic vulnerability analysis of multi-age buried steel pipes in an acidic soil environment[J]. Journal of Tianjin University, 2020, 53(9): 881-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202009001.htm

    [12] 谢孝奎, 贺金川, 郑山锁, 等. 碱性及近中性土壤环境中埋地钢管时变地震易损性分析[J]. 天津大学学报, 2020, 53(12): 1254-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202012006.htm

    XIE Xiaokui, HE Jinchuan, ZHENG Shansuo, et al. Time-varying seismic fragility analysis of buried steel pipes in alkaline and near-neutral soil environments[J]. Journal of Tianjin University, 2020, 53(12): 1254-1263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202012006.htm

    [13] 姜华. 埋地钢管在地震波作用下的响应分析[D]. 武汉: 华中科技大学, 2011.

    JIANG Hua. Response Analysis of Buried Pipelines under Seismic Waves[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)

    [14] 侯忠良. 地下管线抗震[M]. 北京: 学术书刊出版社, 1990.

    HOU Zhongliang. Earthquake Resistance of Underground Pipelines[M]. Beijing: Academic Book Publishing House, 1990. (in Chinese)

    [15] 城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.

    Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)

    [16]

    American Lifelines Alliance(ALA). Guidelines for the Design of Buried Steel Pipe[M]. American Society of Civil Engineers, 2001.

    [17]

    American Lifelines Alliance(ALA). Seismic Guidelines for Water Pipelines[M]. American Society of Civil Engineers, 2005.

    [18]

    DADFAR B, M. NAGGAR M E, NASTEV M. Vulnerability of buried energy pipelines subject to earthquake-triggered transverse landslides in permafrost thawing slopes[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(4): 1-12.

    [19] 韩俊艳, 郭之科, 李满君, 等. 纵向非一致激励下非均匀场地中埋地管道的振动台试验研究[J]. 岩土工程学报, 2021, 43(6): 1147-1156. doi: 10.11779/CJGE202106019

    HAN Junyan, GUO Zhike, LI Manjun, et al. Shaking table tests on buried pipelines in inhomogeneous soil under longitudinal non-uniform seismic excitation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1147-1156. (in Chinese) doi: 10.11779/CJGE202106019

    [20] 黄涛, 陈小平, 王向东, 等. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201601005.htm

    HUANG Tao, CHEN Xiaoping, WANG Xiangdong, et al. Effect of pH value on corrosion behavior of Q235 steel in an artificial soil[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(1): 31-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201601005.htm

    [21]

    ZHENG S S, ZHANG X H, ZHAO X R. Experimental investigation on seismic performance of corroded steel columns in offshore atmospheric environment[J]. Structural Design of Tall and Special Buildings, 2019, 28(4): 1-17.

    [22]

    Applied Technology Council, Federal Emergency Management Agency. Quantification of Building Seismic Performance Factors[R]. America: FEMA, 2008.

    [23] 杜修力, 韩俊艳, 李立云. 长输埋地管道振动台试验设计中相似关系的选取[J]. 防灾减灾工程学报, 2013, 33(3): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201303003.htm

    DU Xiuli, HAN Junyan, LI Liyun. Selection of shaking table test similarity relations for long-distance buried pipeline[J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(3): 246-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201303003.htm

    [24]

    ARGYROUDIS S A, PITILAKIS K D. Seismic fragility curves of shallow tunnels in alluvial deposits[J]. Soil Dynamics and Earthquake Engineering, 2011, 35: 1-12.

    [25]

    Hazus User & Technical Manuals[M]. Washington D C: Federal Emergency Management Agency and National Institute of Building Science, 2004.

    [26] 刘爱文. 管道抗震设计规范有关地震作用的综述[J]. 国际地震动态, 2007(9): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200709004.htm

    LIU Aiwen. Discussion on the seismic input proposed by the different countries' seismic codes of pipeline[J]. Recent Developments in World Seismology, 2007(9): 29-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200709004.htm

    [27]

    ZERVA A. Pipeline response to directionally and spatially correlated seismic ground motions[J]. Journal of Pressure Vessel Technology, 1993, 115: 53-58.

    [28] 生命线工程地震破坏等级划分: GB/T 24336—2009[S]. 北京: 中国标准出版社, 2009.

    Classification of Earthquake Damage to Lifeline Engineering: GB/T 24336—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)

    [29] 蒋家卫, 许成顺, 杜修力, 等. 浅埋地铁车站地下框架结构抗震设计的最优地震动强度指标[J]. 岩土工程学报, 2023, 45(2): 318-326. doi: 10.11779/CJGE20211498

    JIANG Jiawei, XU Chengshun, DU Xiuli, et al. Optimal index of earthquake intensity measures for seismic design of underground frame structure of shallow-buried subway station[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 318-326. (in Chinese) doi: 10.11779/CJGE20211498

    [30] 许建聪, 简文彬, 岳尚全. 深厚软土地层地震破坏的作用机理研究[J]. 岩石力学与工程学报, 2005, 24(2): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050200P.htm

    XU Jiancong, JIAN Wenbin, YUE Shangquan. Study on earthquake failure mechanism of deep soft soil layer[J]. Journal of Rock Mechanics and Engineering, 2005, 24(2): 313-320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050200P.htm

  • 期刊类型引用(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 . 百度学术
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 . 百度学术
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 . 百度学术
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 . 百度学术
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 . 百度学术
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 . 百度学术
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 . 百度学术

    其他类型引用(14)

图(8)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 21
出版历程
  • 收稿日期:  2023-01-10
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回