A comprehensive evaluation method for landfill stabilization under aeration and its application
-
摘要: 好氧修复技术具有加速填埋堆体稳定化的优势,正确评估其稳定化进程对好氧修复系统的设计和运营具有重要的意义,但是现有指标数量众多且差异化大。考虑稳定化指标的敏感性和工程监测的难易程度,从稳定化机理出发,分别从气相、液相、固相和沉降4个层面筛选氧气利用率、归一化有机溶质指标、脱氮效率、生物降解度和相对沉降速率为评价指标,并将其统一划分为具有不同稳定化特征的3个阶段(好氧转化、半稳定化和后稳定化),提出指标权重和阶段划分标准。然后,构建了不同阶段中不同指标的隶属度函数,结合模糊综合评价理论实现对填埋场稳定化进程的综合性评价,并将其应用于某好氧修复工程案例。Abstract: The in-situ aeration technology has advantages in accelerating landfill stabilization. A clear understanding of the evaluation of landfill stabilization under aeration is significant to the design and operation of an aeration system. However, the existing indices are numerous and varied. Considering the sensitivity to reflect the stabilization process and the accessibility to be monitored, five indices, oxygen utilization rate, normalized BOD/COD, nitrogen removal efficiency, biodegradation degree, and relative settlement rate, are selected to indicate the landfill stabilization from the perspective of gas, liquid and solid phases, respectively. Given the results of numerical simulations, the stabilization process of landfill under aeration can be divided into three phases: aerobic transformation, semi-stabilization and post-stabilization. After obtaining the corresponding weights of five indices, the membership functions of five indices in three stabilization phases are developed. Using the fuzzy theory, the evaluation method for landfill stabilization is established and applied to an in-situ landfill aeration case.
-
Keywords:
- aerobic remediation /
- landfill /
- stabilization /
- index /
- comprehensive evaluation
-
-
表 1 不同填埋场好氧修复工程中的渗滤液有机质指标
Table 1 Values of NBC in different in-situ aeration programs
表 2 不同填埋场好氧修复工程中的沉降指标
Table 2 Values of settlement and settlement rate in different in-situ aeration programs
表 3 好氧修复稳定化进程阶段划分标准
Table 3 Classification standards for landfill stabilization evaluation under aeration
阶段划分 好氧转化阶段 半稳定化阶段 后稳定化阶段 氧气利用率OUR/% ≥ 45 5 ~ 45 ≤ 5 归一化有机溶质指标NBC ≥ 0.4 0.08 ~ 0.4 ≤ 0.08 脱氮效率NRE/% ≤ 50 50 ~ 95 ≥ 95 生物降解度BD/% ≤ 50 50 ~ 90 ≥ 90 相对沉降速率/(%·a-1) su' ≥ 0 su' < 0且sB' ≥ 0.2 su' < 0且sB' < 0.2 表 4 北京某非正规填埋场原位好氧修复指标
Table 4 Values of stabilization indicators of an in-situ landfill aeration program in Beijing
指标 取值 修复前 修复360 d 气相 抽气井氧气浓度 8% 16% OUR 62% 24% 液相 COD浓度 1900
mg O2/L1000
mg O2/LBOD浓度 1100
mg O2/L400
mg O2/LB/C 0.58 0.4 NBC 1 0.69 氨氮浓度cNH4-N 870
mg N/L300
mg N/LNRE 0% 66% 固相 可降解成分含量 20% 12% BD 0% 40% 沉降 最小沉降速率 — 0.1 m/a
(0.5 %/a)最大沉降速率 — 0.17 m/a
(0.8 %/a)不均匀沉降速率 — -0.3 %/a 表 5 各个评价指标对应不同阶段的隶属度
Table 5 Degrees of membership function of stabilization indices corresponding to different stages
指标 Ⅰ好氧转化阶段 Ⅱ半稳定化阶段 Ⅲ后稳定化阶段 气相指标 0 1 0 液相指标1 0 0.0004 0.9996 液相指标2 0 1 0 液相均值 0 0.5002 0.4998 固相指标 0.94 0.06 0 沉降指标 0 0.288 0.712 -
[1] 李蕾, 彭垚, 谭涵月, 等. 填埋场原位好氧稳定化技术的应用现状及研究进展[J]. 中国环境科学, 2021, 41(6): 2725-2736. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202106030.htm LI Lei, PENG Yao, TAN Hanyue, et al. Application status and research progress of in situ landfill aeration[J]. China Environmental Science, 2021, 41(6): 2725-2736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202106030.htm
[2] 唐平. 模拟准好氧填埋场的稳定化进程研究[D]. 成都: 西南交通大学, 2005. TANG Ping. Research on Stabilization Process in Laboratory Simulating Semi-Aerobic Landfill[D]. Chengdu: Southwest Jiaotong University, 2005. (in Chinese)
[3] 刘娟. 垃圾填埋场稳定化进程核心表征指标研究[D]. 北京: 清华大学, 2011. LIU Juan. Key Indicators for Municipal Solid Waste Landfill Stabilization Process[D]. Beijing: Tsinghua University, 2011. (in Chinese)
[4] TCHOBANOGLOUS G, ELIASSEN R, THEISEN H. Integrated Solid Waste Management—Engineering Principles & Management Issues[M]. Michigan: McGraw-Hill, 1993.
[5] KIM J, POHLAND F G. Process enhancement in anaerobic bioreactor landfills[J]. Water Sci Technol, 2003, 48(4): 29-36. doi: 10.2166/wst.2003.0214
[6] 李红. 农村生活垃圾厌氧准好氧生物反应器填埋场稳定化研究[D]. 成都: 西南交通大学, 2017. LI Hong. A study on the Stabilization During Rural Household Solid Wastes in Anaerobic-Semi-Aerobic Bioreactor Landfill[D]. Chengdu: Southwest Jiaotong University, 2007. (in Chinese)
[7] JIANG J, CHANG Z, LI C, HUANG Y. A new method applied for the evaluation of municipal solid waste landfill stabilization[J]. Environmental Engineering Science, 2009, 26(6): 1123-1130. doi: 10.1089/ees.2008.0322
[8] LIU L, MA J, XUE Q, et al. The in situ aeration in an old landfill in China: multi-wells optimization method and application[J]. Waste Manag, 2018, 76: 614-620. doi: 10.1016/j.wasman.2018.02.041
[9] WU S J, FENG S J, ZHENG Q T, et al. Stabilization behavior of the three-phase and multi-component system of landfilled waste under aeration: numerical modeling[J]. Computers and Geotechnics, 2023, 156: 105318. doi: 10.1016/j.compgeo.2023.105318
[10] RITZKOWSKI M, HEYER K U, STEGMANN R. Fundamental processes and implications during in situ aeration of old landfills[J]. Waste Management, 2006, 26: 356-372. doi: 10.1016/j.wasman.2005.11.009
[11] HRAD M, HUBER-HUMER M. Performance and completion assessment of an in situ aerated municipal solid waste landfill-Final scientific documentation of an Austrian case study[J]. Waste Manag, 2017, 63: 397-409. doi: 10.1016/j.wasman.2016.07.043
[12] RAGA R, COSSU R, HEERENKLAGE J, et al. Landfill aeration for emission control before and during landfill mining[J]. Waste Manag, 2015, 46: 420-429. doi: 10.1016/j.wasman.2015.09.037
[13] RITZKOWSKI M, STEGMANN R. Landfill aeration within the scope of post-closure care and its completion[J]. Waste Manag, 2013, 33(10): 2074-2082. doi: 10.1016/j.wasman.2013.02.004
[14] 生活垃圾填埋场污染控制标准: GB 16889—2008[S]. 北京: 中国环境科学出版社, 2008. Standard for Pollution Control on the Landfill Site of Municipal Solid Waste: GB 16889—2008[S]. Beijing: China Environmental Science Press, 2008. (in Chinese)
[15] 唐嵘. 封场非正规垃圾填埋场好氧降解快速稳定技术及应用研究[D]. 北京: 中国地质大学(北京), 2012. TANG Rong. Research of Technology and Application of Aerobic Degradation on the Accelerating Stabilization Process of Closed Non-Regular Landfills[D]. Beijing: China University of Geosciences, 2012. (in Chinese)
[16] SOHOO I, RITZKOWSKI M, KUCHTA K. Influence of moisture content and leachate recirculation on oxygen consumption and waste stabilization in post aeration phase of landfill operation[J]. Sci Total Environ, 2021, 773: 145584. doi: 10.1016/j.scitotenv.2021.145584
[17] O'DONNELL S T, CALDWELL M D, BARLAZ M A, et al. Case study comparison of functional vs. organic stability approaches for assessing threat potential at closed landfills in the USA[J]. Waste Manag, 2018, 75: 415-426. doi: 10.1016/j.wasman.2018.02.001
[18] KO J H, MA Z, JIN X, et al. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills[J]. Journal of the Air & Waste Management Association, 2016, 66(12): 1245-1256.
[19] STEGMANN R. Development of waste management in the last 30 years[C]// Proceedings of the 8th International Congress on Environmental Geotechnics, Hangzhou, 2019: 172-185.
[20] 生活垃圾填埋场稳定化场地利用技术要求: GB/T 25179—2010[S]. 北京: 中国标准出版社, 2011. Technical Requirements for Site Utilization After Stabilization in Municipal Solid Waste Landfill: GB/T 25179—2010[S]. Beijing: Standards Press of China, 2011. (in Chinese)
[21] 田立斌, 王海东, 杨勇, 等. 原位好氧稳定化技术在非正规垃圾填埋场修复治理中的应用[J]. 环境工程, 2019, 37: 940-945. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-HJGK201908003201.htm TIAN Libin, WANG Haidong, YANG Yong, et al. Remediation of an informal landfill site by in situ aeration[J]. Environmental Engineering, 2019, 37: 940-945. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-HJGK201908003201.htm
-
其他相关附件