Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

波流耦合影响下分层海床隧道周围砂土渗流孔压及液化分析

张治国, 陈金芃, 朱正国, PANY T, 孙苗苗

张治国, 陈金芃, 朱正国, PANY T, 孙苗苗. 波流耦合影响下分层海床隧道周围砂土渗流孔压及液化分析[J]. 岩土工程学报, 2024, 46(4): 683-693. DOI: 10.11779/CJGE20230008
引用本文: 张治国, 陈金芃, 朱正国, PANY T, 孙苗苗. 波流耦合影响下分层海床隧道周围砂土渗流孔压及液化分析[J]. 岩土工程学报, 2024, 46(4): 683-693. DOI: 10.11779/CJGE20230008
ZHANG Zhiguo, CHEN Jinpeng, ZHU Zhengguo, PAN Y T, SUN Miaomiao. Sand liquefaction and seepage pore pressure around shield tunnels in multilayered seabed under action of waves and currents[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 683-693. DOI: 10.11779/CJGE20230008
Citation: ZHANG Zhiguo, CHEN Jinpeng, ZHU Zhengguo, PAN Y T, SUN Miaomiao. Sand liquefaction and seepage pore pressure around shield tunnels in multilayered seabed under action of waves and currents[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 683-693. DOI: 10.11779/CJGE20230008

波流耦合影响下分层海床隧道周围砂土渗流孔压及液化分析  English Version

基金项目: 

国家自然科学基金项目 42177145

国家自然科学基金项目 41977247

省部共建交通工程结构力学行为与系统安全国家重点实验室课题项目 KF2022-07

山东省海洋生态环境与防灾减灾重点实验室课题项目 201703

城市基础设施智能化浙江省工程研究中心课题项目 IUI2022-YB-01

详细信息
    作者简介:

    张治国(1978—),男,博士,博士后,教授,博士生导师,主要从事岩土地下工程方面的研究工作。E-mail:zgzhang@usst.edu.cn

  • 中图分类号: TU443

Sand liquefaction and seepage pore pressure around shield tunnels in multilayered seabed under action of waves and currents

  • 摘要: 目前针对波浪作用下海底盾构隧道周围渗流场的既有理论研究一般将衬砌考虑为不透水介质,较少考虑隧道衬砌的渗透性,尤其是较少考虑波浪与海流共同作用对隧道的影响。此外,既有理论一般将海床视为均质且各向同性工况,忽略了实际情况下分层海床的影响。首先,基于波流共同作用下的海床表面的动力边界条件,采用传递-反射矩阵法得到波流共同作用下自由分层海床的孔压响应;其次,采用镜像法建立了由于隧道存在引起的砂土摄动压力控制方程,并利用砂土与衬砌间渗流连续条件获得了该方程的Fourier级数展开解析解;接着,采用叠加原理得到了波流共同作用下分层海床中隧道周围砂土的渗流压力响应及液化判定解答。最后,将理论解析解与数值结果及已有的试验结果进行对比,获得了较好的一致性。此外,针对海床渗透性和隧道衬砌渗透性进行了影响因素分析。结果表明:海流顺流会增大海床中的孔压和液化程度,逆流会减小海床中的孔压并抑制海床的液化,且流速相同时海床对逆流响应的相对差异总体上也大于顺流;当分层海床上层渗透系数较大时(ks>1×10-2 m/s),海床整体孔压较大,且第一次分层处孔压变化明显;当隧道衬砌渗透系数较小时(kl<1×10-6 m/s),隧道对超静孔隙水压在海床内传播“阻挡”效应明显。
    Abstract: At present, the existing theoretical studies on the seepage field around subsea shield tunnels under wave action generally consider the linings as an impermeable medium, and seldom consider the permeability of the tunnel linings, especially the influences of the coupling action of waves and currents on the tunnel. In addition, the existing theories generally regard the seabed as being homogeneous and isotropic, ignoring the influences of multilayered seabed. Firstly, based on the dynamic boundary conditions of seabed surface under wave-current interaction, the pore water pressure response of pure seabed under wave-current interaction is obtained by the transmission and reflection matrix method. Secondly, the mirror image method is introduced to establish the governing equation for the excess pore water pressure caused by the existence of tunnel, and the analytical solution of the equation is obtained by the Fourier series expansion under the continuous seepage between sand and linings. Then, based on the superposition principle, the seepage pressure of the sand around the tunnel in multilayered seabed under the action of waves and currents is obtained. Finally, the theoretical analytical solution is compared with the numerical results and the existing experimental results, and a good agreement is obtained. In addition, the influencing factors for the permeabilites of seabed and tunnel linings are analyzed. The results show that the following currents will increase the pore pressure in the seabed and the liquefaction degree of the seabed, while the opposing currents will reduce the pore pressure in the seabed and the liquefaction of the seabed. The relative difference of the seabed response to the opposing currents at the same velocity is generally greater than that of the following currents. When the permeability coefficient of the upper seabed is large (ks > 1×10-2 m/s), the overall pore pressure of the seabed is large, and the pore pressure at the first stratification changes significantly. When the permeability coefficient of tunnel linings is small (kl < 1×10-6 m/s), the tunnel has an obvious "block" effects on the propagation of the excess pore pressure in the seabed.
  • 图  1   波流共同作用下海底隧道示意图

    Figure  1.   Schematic diagram of subsea tunnel under combined wave-current interaction

    图  2   分层海床-隧道作用计算模型

    Figure  2.   Computational model for multilayered seabed-tunnel interaction

    图  3   传递-反射矩阵法中波的反射和透射

    Figure  3.   Reflection and transmission of waves for transmission and reflection matrix method

    图  4   镜像法示意图

    Figure  4.   Diagram of mirror image method

    图  5   模型试验布置[20]

    Figure  5.   Layout of model tests [20]

    图  6   管道周围超静孔隙压力对比

    Figure  6.   Comparison of excess pore pressures around pipeline

    图  7   三维数值模型

    Figure  7.   3D numerical model

    图  8   隧道外超静孔隙水压响应对比

    Figure  8.   Comparison of excess pore water pressure responses outside tunnel

    图  9   不同海床渗透系数下隧道外水压响应对比

    Figure  9.   Comparison of external water pressure responses of tunnel for different seabed permeability coefficients

    图  10   不同海床渗透系数下隧道周围超静孔隙水压响应

    Figure  10.   Response of excess pore water pressure around tunnel for different seabed permeability coefficients

    图  11   不同隧道衬砌渗透系数下水压响应对比

    Figure  11.   Comparison of external water pressure responses for different tunnel lining permeability coefficients

    图  12   不同隧道衬砌渗透系数下隧道周围超静孔隙水压响应

    Figure  12.   Response of excess pore water pressure around tunnel for different tunnel lining permeability coefficients

    表  1   数值模型海床参数

    Table  1   Seabed parameters of numerical model

    海床 各层厚度hl/m 泊松比νs 孔隙率ns 剪切模量G/MPa 渗透系数ks/(m·s-1) 重度γs/(kN·m-3) 饱和度Sr
    第1层 10 0.35 0.41 15.8 1.53×10-2 15.3 1.0
    第2层 10 0.35 0.43 18.3 6.20×10-3 19.1 1.0
    第3层 30 0.35 0.47 22.4 1.20×10-4 19.3 1.0
    下载: 导出CSV

    表  2   数值模型波流和隧道参数

    Table  2   Wave currents and tunnel parameters of numerical model

    波流 隧道
    水深d/m 波高H/m 波长L/m 周期T/s 海流流速U0/(m·s-1) 埋深dp/m 外径R/m 衬砌厚度(R-r)/m 剪切模量Gl/GPa 孔隙率nl 泊松比νl 渗透系数kl/(m·s-1)
    20 5 100 9 2 0 -2 15 3 0.3 12.5 0.03 0.2 1.0×10-6
    下载: 导出CSV
  • [1]

    BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886

    [2]

    BIOT M A. Theory of propagation of elastic waves in a fluid-Saturated porous solid: I low-Frequency range[J]. The Journal of the Acoustical Society of America, 2005, 28(2): 168.

    [3]

    BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482-1498. doi: 10.1063/1.1728759

    [4]

    ZIENKIEWICZ O C, CHANG C T, BETTESS P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J]. Géotechnique, 1980, 30(4): 385-395. doi: 10.1680/geot.1980.30.4.385

    [5]

    TOKUO Y, KONING H L, HANS S, et al. On the response of a poro-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87(1): 193-206. doi: 10.1017/S0022112078003006

    [6]

    ULKER M B C, RAHMAN M S, JENG D S. Wave-induced response of seabed: Various formulations and their applicability[J]. Applied Ocean Research, 2009, 31(1): 12-24. doi: 10.1016/j.apor.2009.03.003

    [7]

    GATMIRI B. Simplified finite element analysis of wave-induced effective stresses and pore pressures in permeable sea beds[J]. Géotechnique, 1990, 40(1): 15-30. doi: 10.1680/geot.1990.40.1.15

    [8]

    THOMAS S D. A finite element model for the analysis of wave induced stresses, displacements and pore pressures in an unsaturated seabed: II model verification[J]. Computers and Geotechnics, 1995, 17(1): 107-132. doi: 10.1016/0266-352X(95)91305-N

    [9]

    OZGUR KIRCA V S, SUMER B M, FREDSØE J. Influence of clay content on wave-induced liquefaction[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 140(6): 4014024.

    [10] 刘晓磊, 贾永刚, 郑杰文. 波浪导致黄河口海床沉积物超孔压响应现场试验研究[J]. 岩土力学, 2015, 36(11): 3055-3062. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511003.htm

    LIU Xiaolei, JIA Yonggang, ZHENG Jiewen. In situ experiment of wave-induced excess pore pressure in the seabed sediment in Yellow River Estuary[J]. Rock and Soil Mechanics, 2015, 36(11): 3055-3062. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511003.htm

    [11]

    QI W G, LI C F, JENG D S, et al. Combined wave-current induced excess pore-pressure in a sandy seabed: flume observations and comparisons with theoretical models[J]. Coastal Engineering, 2019, 147(5): 89-98.

    [12]

    ZHOU X L, XU B, WANG J H, et al. An analytical solution for wave-induced seabed response in a multi-layered poro-elastic seabed[J]. Ocean Engineering, 2011, 38(1): 119-129. doi: 10.1016/j.oceaneng.2010.10.003

    [13]

    QI H F, CHEN Z L, LI Y C, et al. Wave and current-induced dynamic response in a multilayered poroelastic seabed[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(1): 11-26. doi: 10.1007/s10064-019-01553-8

    [14]

    ZHOU X L, JENG D S, YAN Y G, et al. Wave-induced multi-layered seabed response around a buried pipeline[J]. Ocean Engineering, 2013, 72(11): 195-208.

    [15]

    ZHU C W, YING H W, GONG X N, et al. Analytical solution for wave-induced hydraulic response on subsea shield tunnel[J]. Ocean Engineering, 2021, 228(5): 108924.

    [16]

    ZIMMERMAN C, STERN M. Scattering of plane compressional waves by spherical inclusions in a poroelastic medium[J]. The Journal of the Acoustical Society of America, 1998, 94(1): 527.

    [17]

    HSU H C, CHEN Y Y, HUS J R C, et al. Nonlinear water waves on uniform current in Lagrangian coordinates[J]. Journal of Nonlinear Mathematical Physics, 2009, 16(1): 47-61.

    [18]

    DERESIEWICZ H, SKALAK R. On uniqueness in dynamic poroelasticity[J]. Bulletin of the Seismological Society of America, 1963, 53(4): 783-788. doi: 10.1785/BSSA0530040783

    [19]

    ZEN K, YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 90-104. doi: 10.3208/sandf1972.30.4_90

    [20]

    CHEN H, ZHANG J S, TONG L L, et al. Experimental study of soil responses around a pipeline in a sandy seabed under wave- current load[J]. Applied Ocean Research, 2023, 130(1): 103409.

    [21] 常方强. 波浪作用下黄河口海底滑坡研究[D]. 青岛: 中国海洋大学, 2009.

    CHANG Fangqiang. Study on Mechanism of Wave-Induced Submarine Landslide at the Yellow River Estuary[D]. Qingdao: Ocean University of China, 2009. (in Chinese)

图(12)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 网络出版日期:  2024-04-09
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回