Integrated study on stability judgment method for grouting anchor tests
-
摘要: 对注浆黏结锚杆各种荷载试验的位移稳定判定方法研究表明:①锚固体与地层界面蠕变遵循蠕变机理,判断锚头位移稳定本质上就是判定界面蠕变是否稳定;②荷载较小时界面发生稳定蠕变,超过临界荷载后发生蠕变破坏,完整破坏过程可分为初始、持续及加速3个阶段,判稳不能采用初始阶段数据、应主要依据持续阶段的蠕变特性;③蠕变破坏形式约2/3锚杆为突变型,1/3为缓变型,对应着3类蠕变曲线形态;④用于判稳的位移阈值不应小于0.1 mm,单元时长不应短于10 min,位移增量不能直接用于判稳;⑤判稳应定性判断蠕变速率总体上在减速,应确定定量指标使速率维持在较低水平从而使位移收敛;⑥主要应依据具有位移与时间双重属性的参数判稳,单元时长位移增量的判稳准确度较高,而蠕变率2.0 mm任何情况下都适用;⑦以蠕变率2.0 mm为内在原则的推荐判稳方法,适用于各种应用场合及各种类型的注浆黏结锚杆,适用于各种荷载试验及快速法等试验加卸载方法。Abstract: The researches on the judgment methods for displacement stability of grouting bonded anchors with various loading tests in cohesive soil layer show that: (1) The interface creep between anchor grout and strata follows the creep mechanism, and the determination of displacement stability of anchor head is to determine whether the interface creep is stable essentially. (2) Stable creep occurs at the interface when the load is relatively small, and creep failure occurs when the load exceeds the critical one. The complete failure process can be divided into three stages: initial, sustained and accelerated. The stability should be determined according to the creep characteristics of the sustained stage rather than the data of the initial stage. (3) About two-thirds of the anchor creep failure forms are abrupt, and the rest are slow, which corresponds to three kinds of creep curve forms. (4) The displacement threshold for stability judgment should not be less than 0.1 mm, the unit period should not be shorter than 10 min, and the displacement increment cannot be directly used for stability judgment. (5) In stability judgment, it should be determined qualitatively that the creep rate is slowing down on the whole, and quantitative indicators should be determined to keep the rate at a low level so as to make the displacement convergent. (6) The stability judgment should mainly be based on the parameters with dual attributes of displacement and time. Its accuracy of the creep variable in the unit period is relatively high, and the creep rate of 2.0 mm is applicable in any case. (7) The creep rate of 2.0 mm as the internal principle of the recommended stability judgment method is suitable for all kinds of applications and various types of bonded anchors, all kinds of loading tests and all kinds of loading and unloading methods such as rapid method.
-
-
表 1 锚杆C18c在各级荷载下变形量
Table 1 Displacements under various loads of anchor C18c
P/kN S0/mm Sf/mm Δs5/mm Δs/mm α/mm 300 9.06 9.14 0.06 0.08 0.04 500 17.29 17.31 0.01 0.02 0.02 600 21.18 21.38 0.18 0.20 0.04 700 25.43 25.83 0.34 0.40 0.11 800 31.00 31.86 0.68 0.86 0.38 900 38.76 39.66 0.74 0.90 0.34 1000 48.62 49.86 0.98 1.24 0.55 1100 59.12 61.40 1.88 2.28 0.84 1200 76.22 86.32 2.36 > 10 > 5.29 注:表中S0表示各级荷载初始位移读数,Sf表示该级最终位移读数,Δs5表示该级前5 min的位移增量,Δs表示该级总的位移增量。下同。 表 2 锚杆C18c在1100 kN时前15 min的位移
Table 2 Displacements of anchor C18c in first 15 min at 1100 kN
t/min S0/mm Δsn/mm Δs/mm t/min S0/mm Δsn/mm Δs/mm 0 59.12 — — 8 61.16 -0.01 2.04 1 60.39 1.27 1.27 9 61.31 0.15 2.19 2 60.63 0.24 1.51 10 61.31 0 2.19 3 60.85 0.22 1.73 11 61.31 0 2.19 4 60.86 0.01 1.74 12 61.31 0 2.19 5 61.00 0.14 1.88 13 61.40 0.09 2.28 6 61.16 0.16 2.04 14 61.40 0 2.28 7 61.17 0.01 2.05 15 61.40 0 2.28 注:表中Δsn表示单元时长位移增量,即某一时刻位移读数减去与其相邻的前一时刻位移读数。下同。 表 3 锚杆C12a在720 kN时的位移
Table 3 Displacements of anchor C12a at 720 kN
t/min S/mm Δsn/mm Δs/mm α/mm 0 33.35 — — — 5 34.67 1.32 1.32 — 10 35.42 0.75 2.07 2.49 15 35.72 0.30 2.37 2.20 20 35.88 0.16 2.53 1.28 25 36.04 0.16 2.69 1.44 30 36.14 0.10 2.79 1.40 35 36.30 0.16 2.95 1.58 40 36.34 0.04 2.99 1.46 45 36.44 0.10 3.09 1.51 50 36.54 0.10 3.19 1.57 55 36.58 0.04 3.23 1.52 60 36.64 0.06 3.29 1.53 表 4 锚杆C18c在1200 kN时的位移
Table 4 Displacements of anchor C18c at 1200 kN
t/min S/mm Δsn/mm Δs/mm α/mm 0 76.22 — — — 5 78.58 2.36 2.36 — 10 79.42 0.84 3.20 2.79 15 80.05 0.63 3.83 2.84 60 82.31 2.26 6.09 3.75 120 84.70 2.39 8.48 5.15 表 5 锚杆B18a在1000 kN时的位移
Table 5 Displacements of anchor B18a at 1000 kN
T t/h S0/mm Δsn/mm Δs/mm α/mm 10:49 0 54.46 — — — 11:49 1 59.34 4.88 4.88 2.06 12:49 2 61.40 1.06 5.94 3.52 13:49 3 61.04 0.64 6.58 3.69 14:49 4 61.66 0.62 7.20 4.96 表 6 锚杆B18b在750 kN时的位移
Table 6 Displacements of anchor B18b at 750 kN
t/min S0/mm Δsn/mm Δs/mm α/mm 0 30.39 — — — 5 32.79 2.40 2.40 — 60(1 h) 33.65 0.86 3.26 0.80 300(5 h) 34.66 1.01 4.27 1.44 1080(18 h) 35.46 0.80 5.07 1.44 表 7 锚杆B18a在1050 kN时的位移
Table 7 Displacements of anchor B18a at 1050 kN
t/min S/mm Δsn/mm Δs/mm α/mm 0 66.92 — — — 5 70.52 3.60 3.60 — 15 min 72.92 2.40 6.00 5.03 60(1 h) 77.04 4.12 10.12 6.84 120(2 h) 79.72 2.68 12.80 8.90 180(3 h) 80.76 1.04 13.84 5.91 240(4 h) 81.80 1.04 14.88 8.32 300(5 h) 82.38 0.58 15.46 5.98 360(6 h) 83.02 0.64 16.10 8.08 表 8 锚杆A15b在990 kN时的位移
Table 8 Displacements of anchor A15b at 990 kN
t/min S0/mm Δsn/mm Δs/mm α/mm 0 61.74 — — — 5 64.22 2.48 2.48 — 15 65.55 1.33 3.81 2.79 60(1 h) 68.02 2.47 6.28 4.10 120(2 h) 69.42 1.40 7.68 4.65 180(3 h) 70.35 0.93 8.61 5.28 240(4 h) 71.08 0.73 9.34 5.84 300(5 h) 71.66 0.58 9.92 5.98 360(6 h) 72.36 0.70 10.62 8.84 -
[1] 李强, 付文光, 李波. 拉力型黏性土层锚杆抗拔力现场试验[J]. 现代隧道技术, 2020, 57(5): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202005029.htm LI Qiang, FU Wenguang, LI Bo. Field test of pull-out resistance of the tension anchor in cohesive soils[J]. Modern Tunnelling Technology, 2020, 57(5): 210-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202005029.htm
[2] 凌贤长, 蔡德所. 岩体力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2002: 87-89. LING Xianchang, CAI Desuo. Rock Mechanics[M]. Harbin: Harbin Institute of Technology Press, 2002: 87-89. (in Chinese)
[3] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. LI Guangxin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
[4] 陈昌富, 刘俊斌, 徐优林, 等. 锚-土界面剪切蠕变试验及其经验模型研究[J]. 岩土工程学报, 2016, 38(10): 1762-1768. doi: 10.11779/CJGE201610003 CHEN Changfu, LIU Junbin, XU Youlin, et al. Tests on shearing creep of anchor-soil interface and its empirical model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1762-1768. (in Chinese) doi: 10.11779/CJGE201610003
[5] 徐优林. 土层锚杆蠕变特性及工程应用研究[D]. 长沙: 湖南大学, 2014. XU Youlin. Creep Properties of Soil Anchor and Application Research[D]. Changsha: Hunan University, 2014. (in Chinese)
[6] 刘延东. 花岗岩残积土不同类型锚杆判稳指标及其承载特性研究[D]. 深圳: 哈尔滨工业大学(深圳), 2021. LIU Yandong. Study on Stability Index and Bearing Characteristics of Different Type of Anchor Bolts in Granite Residual Soil[D]. Shenzhen: Harbin Institute of Technology(Shenzhen), 2021. (in Chinese)
[7] 杨立, 叶俊廷, 付文光. 黏性土层中全黏结锚杆力学性能试验研究[J]. 建筑科学, 2020, 36(增刊1): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2020S1017.htm YANG Li, YE Junting, FU Wenguang. Experimental study on the mechanical property of full-length bond anchor in cohesive soil[J]. Building Science, 2020, 36(S1): 103-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2020S1017.htm
[8] 建筑边坡工程技术规范: GB 50330—2013[S]. 北京: 中国建筑工业出版社, 2014. Technical Code for Building Slope Engineering: GB 50330—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
[9] 建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国计划出版社, 2012. Code for Design of Building Foundation: GB 50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese)
[10] 建筑地基基础检测规范: DBJ 15-60-2008[S]. 北京: 中国建筑工业出版社, 2008. Code for Testing of Building Foundation: DBJ15-60-2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)
[11] 岩土锚杆(索)技术规程: CECS 22—2005[S]. 北京: 中国计划出版社, 2005. Technical Specification for Ground Anchors: CECS 22—2005[S]. Beijing: China Planning Press, 2005. (in Chinese)
[12] 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012. Technical Specification for Retaining and Protection of Building Foundation Excavations: JGJ 120—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
[13] 锚杆检测与监测技术规程: JGJ/T 401—2017[S]. 北京: 中国建筑工业出版社, 2017. Technical Specification for Testing & Monitoring of Anchors: JGJ/T 401—2017[S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
[14] Geotechnical Investigation and Testing-Testing of Geotechnical Structures: Part 5 Testing of Grouted Anchors: EN ISO 22477—5: 2018[S]. London: BSI Standards Limited, 2018.
[15] PTI DC35.1-14. Recommendations for Prestressed Rock and Soil Anchors[M]. 5th ed. New York: PTI, 2014.
[16] Code of Practice for Grouted Anchors: BS 8081: 2015[S]. BSI Limited, London, 2015.
[17] 岩土锚杆与喷射混凝土支护工程技术规范: GB 50086—2015[S]. 北京: 中国计划出版社, 2016. Technical Code for Engineering of Ground Anchoring and Shotcrete Support: GB 50086—2015[S]. Beijing: China Planning Press, 2016. (in Chinese)
[18] 公益社团法人地盘工学会. グラウントアンカー—設計‧施工基準、同解說: JGS 4101—2012[S]. 东京, 2012. Standard Code and Explain of Design and Construction for Ground Anchor: JGS 4101—2012[S]. Tokyo, 2012. (in Japanese)
[19] 付文光, 卓志飞, 任晓光. 土层锚索浆体与筋体黏结强度的试验研究[J]. 岩土工程学报, 2018, 40(7): 1300-1308. doi: 10.11779/CJGE201807017 FU Wenguang, ZHUO Zhifei, REN Xiaoguang. Tests on bond strength between grout and tendon of soil anchors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1300-1308. (in Chinese) doi: 10.11779/CJGE201807017
-
期刊类型引用(2)
1. 占鑫杰,吕冲,桂书润,李振亚. 化学调质及固结作用下市政污泥水分转化规律. 科学技术与工程. 2025(05): 2057-2065 . 百度学术
2. 张玉伟,宋战平,谢永利. 孔隙变化条件下黄土土水特征曲线预测模型. 岩土工程学报. 2022(11): 2017-2025 . 本站查看
其他类型引用(4)
-
其他相关附件