Model tests on large-section and shallow soil rectangular pipe jacking
-
摘要: 在顶管隧道施工中,同步注浆是控制地表变形和顶力控制的关键环节。目前对于传统的同步注浆研究主要局限于浆液材料,摩擦系数的研究,而对浆液本身流动及其填充机理的研究涉及很少。通过建立顶管-浆液-土体系统和模型试验装置,在考虑相似律的情况下,介绍了大断面矩形顶管同步注浆的室内缩尺模型试验研究结果,研究了传统触变浆液(由膨润土、羧甲基纤维素和纯碱组成)和HS-3复合浆液和聚丙烯酰胺复合浆液对泥浆套质量影响效果。试验中测量了土层的竖向位移变化、顶进力的大小,以观察同步注浆对地面位移和顶力的影响。探究了浅覆土大断面矩形顶管隧道同步注浆对地面位移和顶进力的大小影响规律。试验发现,在注浆情况下,顶进力可以减少40%左右。
-
关键词:
- 模型试验 /
- 顶管-浆液-土体系统 /
- 同步注浆 /
- 矩形顶管
Abstract: During the construction of pipe jacking tunnels, the simultaneous injection is a key in controlling the surface deformation and jacking force. At present, the traditional researches on the simultaneous injection are mainly limited to those on the slurry materials and the friction coefficient, while the researches on the flow of the slurry itself and its filling mechanism are rarely involved. By establishing the pipe-slurry-soil system and the model test platform, the results of a laboratory reduced-scale model test on the simultaneous injection of slurry of super-large rectangular pipe jacking are introduced. It is shown that different slurries have different effects on the quality of the protective slurry screen, which contains the traditional thixotropic slurry (consisting of bentonite, CMC (carboxy methyl cellulose) and soda ash) and HS-3 compound slurry and polyacrylamide compound slurry. The settlements of different parts of soils and the pipe jacking forces are measured to observe the influences of the protective slurry screen on the ground settlements and the pipe jacking forces. The effects of the simultaneous injection on the ground displacements and the jacking forces of a large-section rectangular pipe-jacking tunnel with shallow overburden are explored. The test results show that the jacking forces can be reduced by about 40% under the simultaneous injection.-
Keywords:
- model test /
- pipe-slurry-soil system /
- simultaneous injection /
- pipe jacking
-
-
表 1 土体力学参数及相似比
Table 1 Mechanical parameters and similarity ratios of soils
土体种类
/(kN∙m-3)
/(°)
/kPaE
/MPa原型土 17.2 0.96 15.0 0.95 11.0 1.03 2.9 9.7 模型土 17.9 15.8 10.7 0.3 表 2 模型浆液1参数指标及相似比
Table 2 Mechanical parameters and similarity ratios of Slurry 1
浆液种类 参数指标及相似比 /1 /Pa p/Pa 原型浆液1 0.044 1.07 12.3 9.5 4 10.5 模型浆液1 0.041 1.3 0.38 表 3 模型浆液2参数指标及相似比
Table 3 Mechanical parameters and similarity ratios of Slurry 2
浆液种类 参数指标及相似比 /1 /Pa p/Pa 原型浆液2 0.027 0.68 42.4 11.5 9.7 10.5 模型浆液2 0.040 3.7 0.92 表 4 模型浆液3参数指标及相似比
Table 4 Mechanical parameters and similarity ratios of Slurry 3
浆液种类 参数指标及相似比 /1 /Pa p/Pa 原型浆液3 0.021 0.75 52.1 10.2 12.6 11.5 模型浆液3 0.029 5.1 1.1 表 5 试验工况
Table 5 Test conditions
工况 浆液种类 埋深/cm 顶进速度/(mm·s-1) 注浆率
/%工况1 浆液1 35 0.150 300 工况2 浆液2 35 0.150 300 工况3 浆液3 35 0.150 300 工况4 浆液2 25 0.150 300 工况5 浆液2 25 0.046 300 工况6 浆液2 25 0.150 200 工况7 浆液2 25 0.046 200 -
[1] 彭立敏, 王哲, 叶艺超, 等. 矩形顶管技术发展与研究现状[J]. 隧道建设, 2015, 35(1): 1–8. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201501001.htm PENG Li-min, WANG Zhe, YE Yi-chao, et al. Technological development and research status of rectangular pipe jacking method[J]. Tunnel Construction, 2015, 35(1): 1–8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201501001.htm
[2] REILLY C C, ORR T L L. Physical modelling of the effect of lubricants in pipe jacking[J]. Tunnelling and Underground Space Technology, 2017, 63: 44–53. doi: 10.1016/j.tust.2016.11.005
[3] 王春婷, 隆威. 大口径长距离顶管工程泥浆配方试验研究[J]. 铁道科学与工程学报, 2014, 11(1): 106–111. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201401018.htm WANG Chun-ting, LONG Wei. Experimental study on the slurry formulation used for the large diameter long distance pipe-jacking project[J]. Journal of Railway Science and Engineering, 2014, 11(1): 106–111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201401018.htm
[4] 王明胜, 刘大刚. 顶管隧道工程触变泥浆性能试验及减阻技术研究[J]. 现代隧道技术, 2016, 53(6): 182–189. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201606024.htm WANG Ming-sheng, LIU Da-gang. Test of thixotropic slurry properties and study of resistance-reducing technology for pipe jacking tunnel construction[J]. Modern Tunnelling Technology, 2016, 53(6): 182–189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201606024.htm
[5] 罗汀, 陈含, 姚仰平, 等. 锅盖效应水分迁移规律分析[J]. 工业建筑, 2016, 46(9): 6–9. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201609002.htm LUO Ting, CHEN Han, YAO Yang-ping, et al. Analysis of water migration characteristics of pot-cover effect[J]. Industrial Construction, 2016, 46(9): 6–9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201609002.htm
[6] 张莎莎, 戴志仁, 白云. 盾构隧道同步注浆浆液压力分布规律模型试验研究[J]. 中国铁道科学, 2015, 36(5): 43–53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201505008.htm ZHANG Sha-sha, DAI Zhi-ren, BAI Yun. Model test research on distribution law of grout pressure for simultaneous backfill grouting during shield tunneling[J]. China Railway Science, 2015, 36(5): 43–53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201505008.htm
[7] DING W Q, DUAN C, ZHU Y H, et al. The behavior of synchronous grouting in a quasi-rectangular shield tunnel based on a large visualized model test[J]. Tunnelling and Underground Space Technology, 2019, 83: 409–424.
[8] ZHOU S, et al. Experimental study on the effect of injecting slurry inside a jacking pipe tunnel in silt stratum[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 466–471.
[9] 丁文其, 段超, 赵天驰, 等. 类矩形盾构同步注浆压力分布与影响试验分析[J]. 现代隧道技术, 2016, 53(增刊1): 209–215. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2016S1031.htm DING Wen-qi, DUAN Chao, ZHAO Tian-chi, et al. Experimental study on pressure distribution and influence of synchronous grouting of quasi-rectangular tunnels[J]. Modern Tunnelling Technology, 2016, 53(S1): 209–215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2016S1031.htm
[10] 徐前卫. 盾构施工参数的地层适应性模型试验及其理论研究[D]. 上海: 同济大学, 2006. XU Qian-wei. Study on the Simulated Model Test of Shield Machine's Working Parameters Applicable to Different Stratums and Its Theoretical Investigation[D]. Shanghai: Tongji University, 2006. (in Chinese)