Full-scale tests on deformation recoverability of longitudinal joints of shield tunnel
-
摘要: 进行了盾构隧道拱顶双缝接头和拱腰单缝接头的原型足尺试验,探究两类接头在隧道上方堆载作用下的变形发展规律、以及卸载和土体微扰动注浆条件下的变形可恢复性。试验结果表明:随着地表堆载增大,接头张开变形呈非线性发展;超载引起的变形可以通过卸载得到部分恢复,既有变形越小,恢复效果越好;注浆作用下,拱顶接头的变形恢复效果较拱腰接头更为显著。Abstract: A series of full-scale tests are conducted on the two-seam longitudinal joint at the shield tunnel crown and one-seam longitudinal joint at the shield tunnel waist, aiming to explore the deformation development laws of these two joints under the surcharge above the tunnel and the deformation recoverability under the conditions of unloading and soil micro-disturbance grouting. The test results show that the joint opening develops nonlinearly with the increase of the surcharge load. The deformation caused by the surcharge can be partially recovered by unloading. The smaller the deformation, the better the recovery effects. Under the action of grouting, the deformation recovery effects of the joints at the tunnel crown are better than those of the joints at the tunnel waist.
-
-
表 1 试验工况
Table 1 Test design
工况编号 接头类型 试验内容 加载过程 试验控制变量 变量值 正常荷载
水平工况Ⅰ 拱顶接头 变形恢复过程 加载至正常荷载水平→施加超载→卸载至正常荷载水平→注浆过程模拟 超载程度/接头内力;
弯矩M,
轴力S,
剪力QM=178 kN/m,
N=593 kN,
Q=88 kN拱顶接头:
M=118 kN/m,
N=590 kN,
Q=87 kN
拱腰接头:
M=98 kN/m,
N=816 kN工况Ⅱ M=278 kN/m,
N=927 kN,
Q=134 kN工况Ⅲ M=378 kN/m,
N=1260 kN,
Q=181 kN工况Ⅳ 拱腰接对 M=155 kN/m,
N=968 kN工况Ⅴ M=171 kN/m,
N=1068 kN,工况Ⅵ M=188 kN/m,
N=1175 kN -
[1] 夏海平. 上海地铁盾构隧道纵缝接头的破坏试验及三维数值模型研究[D]. 上海: 同济大学, 2014. XIA Hai-ping. Research on Bending Test and 3D Numerical Model of Longitudinal Joint of Shield Tunnel of Shanghai Metro[D]. Shanghai: Tongji University, 2014. (in Chinese)
[2] LI X J, YAN Z G, WANG Z, et al. Experimental and analytical study on longitudinal joint opening of concrete segmental lining[J]. Tunnelling and Underground Space Technology, 2015, 46: 52–63. doi: 10.1016/j.tust.2014.11.002
[3] LIU X, BAI Y, YUAN Y, et al. Experimental investigation of the ultimate bearing capacity of continuously jointed segmental tunnel linings[J]. Structure and Infrastructure Engineering, 2016, 12(10): 1364–1379. doi: 10.1080/15732479.2015.1117115
[4] HUANG H W, SHAO H, ZHANG D M, et al. Deformational responses of operated shield tunnel to extreme surcharge: a case study[J]. Structure and Infrastructure Engineering, 2017, 13(3): 345–360. doi: 10.1080/15732479.2016.1170156
[5] LEE K M, HOU X Y, GE X W, et al. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(4): 365–390. doi: 10.1002/nag.134