Study and design of rotary arm of geotechnical centrifuge with high speed
-
摘要: 转臂是高速土工离心机承载的关键部件,现有集成式转臂所能达到的离心加速度有限,而采用整体锻造加工、兜装方式负载的整体式转臂则可实现高离心加速度设计。根据整体式转臂的结构特点,将其分为主臂段和兜装段进行针对性设计,主臂段采用变截面等强度设计,兜装段则分别对兜装根部的圆角和兜装梁的轻量化进行了对比设计。采用有限元分析方法对设计结果进行分析校核,结果表明,在离心加速度1700.4g下该转臂最大应力小于450 MPa,安全系数大于2,该转臂所能承受离心加速度远超现有水平,对实际工程有参考意义。Abstract: The rotary arm is the key component of geotechnical centrifuge to support loads. The centrifugal acceleration of the assembly rotary arm is limited. The high acceleration design of the rotary arm can be realized by using the whole forging process and carrying loads. According to its structural characteristics, the integral rotary arm is divided into the main arm section and the pocket section. The main arm section is designed with variable cross-section and equal strength. For the pocket section, the lightweight design of the fillet at the pocket root and the pocket beam is compared respectively. The finite element analysis method is used to analyze the design results. The results show that the maximum stress of the rotary arm is less than 450 MPa and the safety factor is greater than 2 at 1700.4g. The acceleration of rotary arm exceeds the level of the existing centrifuge, which is of reference significance for practical engineering.
-
Keywords:
- geotechnical centrifuge /
- rotary arm /
- variable cross-section /
- optimization design
-
-
表 1 35CrNi3MoV力学性能参数
Table 1 Parameters of mechanical performance of 35CrNi3MoV
材料名称 密度/
(kg·m-3)弹性模量/GPa 泊松比 屈服强度/MPa 35CrNi3MoV 7850 210 0.3 900 -
[1] 贾普照. 稳态加速度模拟试验设备: 离心机概论与设计[M]. 北京: 国防工业出版社, 2013. JIA Pu-zhao. Steady-State Acceleration Simulation Test Equipment[M]. Beijing: National Defense Industry Press, 2013. (in Chinese)
[2] 黎启胜, 许元恒, 罗龙. 科学试验用离心机发展综述[J]. 装备环境工程, 2015, 12(5): 1–10, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201505003.htm LI Qi-sheng, XU Yuan-heng, LUO Long. Review on development of centrifuge for scientific tests[J]. Equipment Environmental Engineering, 2015, 12(5): 1–10, 87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201505003.htm
[3] 林明. 国内土工离心机及专用试验装置研制的新进展[J]. 长江科学院院报, 2012, 29(4): 80–84. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201204022.htm LIN Ming. Progress of geotechnical centrifuge and specialized test device in China[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(4): 80–84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201204022.htm
[4] LEDBETTER R H, STEEDMAN R S, SCHOFIELD A N, et al. US Army's engineering centrifuge: design[C]// Proc Centrifuge 92, Lisboa, 1992.
[5] 陈磊, 洪建忠, 赵世鹏, 等. 长转臂离心机转臂设计[J]. 装备环境工程, 2015(5): 121–124, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201505023.htm CHEN Lei, HONG Jian-zhong, ZHAO Shi-peng, et al. Design of rotating arm of long-arm centrifuge[J]. Equipment Environmental Engineering, 2015(5): 121–124, 135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201505023.htm
[6] 冉光斌, 余绍蓉, 刘小刚, 等. 土工二维振动离心机转臂的设计研究[J]. 工程设计学报, 2013, 20(1): 70–74. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201301016.htm RAN Guang-bin, YU Shao-rong, LIU Xiao-gang, et al. Research and design of swing arm system of two-dimensional geotechnical centrifugal shaker[J]. Chinese Journal of Engineering Design, 2013, 20(1): 70–74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201301016.htm
[7] TERASHI M. Development of PHRI Geotechnical Centrifuge and Its Application[R]. Tokyo: Port and Harbour Research Institute, 1985.
[8] 张继春, 徐斌, 林波. Pro/ENGINEER Wildfire结构分析[M]. 北京: 机械工业出版社, 2004. ZHANG Ji-chun, XU Bin, LIN Bo. Pro/ENGINEER Wildfire Wildficre Structure Analysis[M]. Beijing: China Machine Press, 2004. (in Chinese)
[9] 冉光斌, 罗昭宇, 刘小刚, 等. 土工离心机吊篮的设计及优化方法[J]. 机械设计, 2009, 26(11): 68–70. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200911021.htm RAN Guang-bin, LUO Zhao-yu, LIU Xiao-gang, et al. Design and optimization method of the suspended basket of geotechnical centrifuge[J]. Journal of Machine Design, 2009, 26(11): 68–70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200911021.htm