• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于离心机振动台试验的地震液化中砂土细观结构的演化机理分析

谢小丽, 王子凡, 叶斌

谢小丽, 王子凡, 叶斌. 基于离心机振动台试验的地震液化中砂土细观结构的演化机理分析[J]. 岩土工程学报, 2022, 44(S2): 45-49. DOI: 10.11779/CJGE2022S2010
引用本文: 谢小丽, 王子凡, 叶斌. 基于离心机振动台试验的地震液化中砂土细观结构的演化机理分析[J]. 岩土工程学报, 2022, 44(S2): 45-49. DOI: 10.11779/CJGE2022S2010
XIE Xiao-li, WANG Zi-fan, YE Bin. Centrifuge shaking table tests on evolution mechanism of sand mesostructure during earthquake liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 45-49. DOI: 10.11779/CJGE2022S2010
Citation: XIE Xiao-li, WANG Zi-fan, YE Bin. Centrifuge shaking table tests on evolution mechanism of sand mesostructure during earthquake liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 45-49. DOI: 10.11779/CJGE2022S2010

基于离心机振动台试验的地震液化中砂土细观结构的演化机理分析  English Version

基金项目: 

国家自然科学基金项目 41977225

详细信息
    作者简介:

    谢小丽(1994—),女,博士研究生,主要从事岩土地震工程方面的科研工作。E-mail: xiexiaoli@tongji.edu.cn

    通讯作者:

    叶斌,E-mail: yebin@tongji.edu.cn

  • 中图分类号: TU43

Centrifuge shaking table tests on evolution mechanism of sand mesostructure during earthquake liquefaction

  • 摘要: 已有研究表明地震液化历史是影响砂土抗液化能力的重要因素,相关研究学者认为这种影响的内在机理是砂土颗粒在前次地震液化后形成了稳定或者不稳定的细观结构,但是目前针对地震液化全过程中砂土细观结构演化行为的直接试验数据还很少。通过离心机振动台试验模拟了一个饱和砂土地基的地震液化现象,在试验过程中测试模型不同埋深处的加速度、孔压以及地表沉降,并基于细观图像获取设备记录了地震液化全过程中砂土细观数字图像。试验结果表明微振动会增加颗粒接触、减小颗粒间孔隙,随着振动强度增加,颗粒重新建立接触,颗粒间孔隙重新分布。受孔隙流体向上渗流作用,颗粒形成偏竖向和偏横向联通的大孔隙,偏竖向大孔隙周围的颗粒在渗流作用下长轴偏向竖直。
    Abstract: The existing studies demonstrate that the history of earthquake liquefaction is an important factor affecting the liquefaction resistance of sand. The researchers think the intrinsic mechanism of these effects is the generation of stable or unstable sand mesostructure after the previous liquefaction event. However, few studies have directly given the experimental results of the evolution behaviors of the sand mesostructure during the whole process of liquefaction. In this study, the centrifuge shaking table tests are conducted to model the earthquake liquefaction of a saturated sand deposit. The pore pressures and accelerations at different depths and the settlements of the sand deposit are measured. Besides, the mesoscopic digital images of the sand mesostructure are recorded simultaneously by a mesoscopic image acquisition system. The experimental results show that the small shaking increases the contacts and decreases the voids among sand particles. The particle contacts are reconstructed and the voids are redistributed with the larger shaking. Approximately vertically and horizontally linked large voids are caused by the upper seepage effects of the pore fluid. The sand particles nearby the approximately vertically large voids rotate vertically under the seepage effects.
  • 图  1   饱和砂土模型的布局(模型尺寸)

    Figure  1.   Layout of model for saturated sand (in model size)

    图  2   输入地震波

    Figure  2.   Input seismic waves

    图  3   超孔压和超孔压比的时程曲线

    Figure  3.   Time histories of excess pore pressure and excess pore pressure ratio

    图  4   振动阶段砂土颗粒细观结构演化过程

    Figure  4.   Evolution of sand mesostructure during shaking

    图  5   砂土液化阶段颗粒细观结构演化过程

    Figure  5.   Evolution of sand mesostructure when ru=1.0

    图  6   砂土不完全液化阶段颗粒细观结构演化过程

    Figure  6.   Evolution of sand mesostructure when ru < 1.0

    图  7   颗粒长轴排列的各向异性与优势方向的演化过程

    Figure  7.   Evolution of fabric anisotropy and dominated direction of long axes of particles

  • [1]

    QUIGLEY M C, BASTIN S, BRADLEY B A. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence[J]. Geology, 2013, 41(4): 419–422. doi: 10.1130/G33944.1

    [2]

    TOWHATA I, MARUYAMA S, KASUDA K I, et al. Liquefaction in the Kanto region during the 2011 off the Pacific coast of Tohoku earthquake[J]. Soils and Foundations, 2014, 54(4): 859–873. doi: 10.1016/j.sandf.2014.06.016

    [3]

    FINN W D L, BRANSBY P L, PICKERING D J. Effect of strain history on liquefaction of sand[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(6): 1917–1934. doi: 10.1061/JSFEAQ.0001478

    [4]

    SUZUKI T. Effects of density and fabric change on reliquefaction resistance of saturated sand[J]. Soils and Foundations, 1988, 28(2): 187–195. doi: 10.3208/sandf1972.28.2_187

    [5]

    YE B, XIE X L, ZHAO T, et al. Centrifuge tests of macroscopic and mesoscopic investigation into effects of seismic histories on sand liquefaction resistance[J]. Journal of Earthquake Engineering, 2022, 26(8): 4302–4324. doi: 10.1080/13632469.2020.1826373

    [6]

    WANG R, FU P, ZHANG J-M, et al. Fabric characteristics and processes influencing the liquefaction and re-liquefaction of sand[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105720. doi: 10.1016/j.soildyn.2019.105720

    [7]

    CHANEY R C, DEMARS K R, DEWOOLKAR M M, et al. A substitute pore fluid for seismic centrifuge modeling[J]. Geotechnical Testing Journal, 1999, 22(3): 196. doi: 10.1520/GTJ11111J

    [8]

    ROTHENBURG L, BATHURST R J. Analytical study of induced anisotropy in idealized granular materials[J]. Géotechnique, 1989, 39(4): 601–614. doi: 10.1680/geot.1989.39.4.601

图(7)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 网络出版日期:  2023-03-26
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回