• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于透明土的填土密实度对土拱效应影响模型试验研究

叶观宝, 李凌旭, 张振, 陶凤娟, 程冰男

叶观宝, 李凌旭, 张振, 陶凤娟, 程冰男. 基于透明土的填土密实度对土拱效应影响模型试验研究[J]. 岩土工程学报, 2022, 44(S2): 20-24. DOI: 10.11779/CJGE2022S2005
引用本文: 叶观宝, 李凌旭, 张振, 陶凤娟, 程冰男. 基于透明土的填土密实度对土拱效应影响模型试验研究[J]. 岩土工程学报, 2022, 44(S2): 20-24. DOI: 10.11779/CJGE2022S2005
YE Guan-bao, LI Ling-xu, ZHANG Zhen, TAO Feng-juan, CHENG Bin-nan. Model tests on influences of fill density on soil arching effects using transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 20-24. DOI: 10.11779/CJGE2022S2005
Citation: YE Guan-bao, LI Ling-xu, ZHANG Zhen, TAO Feng-juan, CHENG Bin-nan. Model tests on influences of fill density on soil arching effects using transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 20-24. DOI: 10.11779/CJGE2022S2005

基于透明土的填土密实度对土拱效应影响模型试验研究  English Version

基金项目: 

国家自然科学基金项目 41972272

国家自然科学基金项目 41772281

中央高校基本科研业务费专项资金项目 22120190220

详细信息
    作者简介:

    叶观宝(1964—),男,教授,博士,主要从事地基处理、软土工程与测试技术等方面的教学和科研工作。E-mail: ygb1030@126.com

    通讯作者:

    张振,E-mail: dyzhangzhen@126.com

  • 中图分类号: TU43

Model tests on influences of fill density on soil arching effects using transparent soil

  • 摘要: 土拱效应广泛存在于岩土工程中。开展基于透明土的活动门试验,研究填土密实度对土拱效应演化的影响。研究表明,密实度较低的填土,较小的相对位移就可以达到土拱稳定阶段,提高填土密实度有利于土拱效应的发挥;填土密实度对内拱高度无影响,但对外拱有显著影响;相对位移在0~3%时,位移反射率迅速上升,而后逐渐趋稳,提高密实度有利于减弱基地差异沉降向上反射。研究将为填土密实度对土拱演化过程的影响提供参考。
    Abstract: The soil arching effect commonly exists in geotechnical engineering. The trapdoor tests are conducted using transparent soil to study the influences of fill density on the soil arching effect. The results show that under the lower compactness of the fill, the smaller relative displacement can reach the steady stage of soil arching, and improving the compactness of the fill can reinforce the soil arching effect. The fill density has no influences on the height of the inner arch, but significant influences on the outer arch. When the relative displacement is between 0% and 3%, the displacement reflectivity increases rapidly, and then gradually reaches a constant. Improving the fill density is beneficial to weakening the reflection of differential settlement. This study may provide a references for the influence of fill density on the evolution of soil arching.
  • 图  1   透明土配制

    Figure  1.   Preparation of transparent soil

    图  2   活动门试验装置示意图

    Figure  2.   Schematic diagram of trapdoor

    图  3   地基反力曲线

    Figure  3.   Curves of ground reaction

    图  4   土压力分布

    Figure  4.   Distribution of earth pressure

    图  5   完全土拱阶段竖向位移云图

    Figure  5.   Vertical displacements at complete soil arching

    图  6   相对位移20%时的竖向位移云图

    Figure  6.   Vertical displacements at displacement of 20%

    图  7   位移反射率-相对位移曲线

    Figure  7.   Displacement reflectivity-relative displacement curves

    表  1   试验方案

    Table  1   Test plans

    编号 B/mm H/mm Δ/B 拱数 填土密实度/%
    T1 100 300(H/B=3) 0.2 3 50
    T2 100 300(H/B=3) 0.2 3 85
    注:B为活动门宽度,H为填土高度,Δ为活动门位移。
    下载: 导出CSV
  • [1]

    TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]// Proceedings First International Conference on Soil Mechanics and Foundation Engineering. Cambridge, 1936.

    [2] 徐东. 黏土拱效应试验研究[D]. 上海: 上海铁道大学. 1998.

    XU Dong. Experimental Study of Clay Arching Effect[D]. Shanghai: Shanghai Railway University, 1998. (in Chinese)

    [3] 加瑞, 朱伟, 钟小春. 砂土拱效应的挡板下落试验及机理研究[C]// 第一届中国水利水电岩土力学与工程学术讨论会. 昆明, 2006.

    JIA Rui, ZHU Wei, ZHONG Xiao-chun. Test and mechanism study of baffle drop for sand arching effect[C]// The First China Symposium on Geotechnical Mechanics and Engineering of Water Resources and Hydropower. Kunming, 2006. (in Chinese)

    [4] 郑俊杰, 陈保国, 张世飙. 沟埋式涵洞非线性土压力试验研究与数值模拟[J]. 岩土工程学报, 2008, 30(12): 1771–1777. http://cge.nhri.cn/cn/article/id/13058

    ZHENG Jun-jie, CHEN Bao-guo, ZHANG Shi-biao. Experimental investigation and numerical simulation of nonlinear earth pressure for trench-buried culverts[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1771–1777. (in Chinese) http://cge.nhri.cn/cn/article/id/13058

    [5] 路德春, 曹胜涛, 杜修力, 等. 平面应变条件下的土拱效应[J]. 岩土工程学报, 2011, 33(增刊1): 461–465. http://cge.nhri.cn/cn/article/id/14302

    LU De-chun, CAO Sheng-tao, DU Xiu-li, et al. Soil arching effect under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 461–465. (in Chinese) http://cge.nhri.cn/cn/article/id/14302

    [6] 高登. 砂土层中盾构隧道竖向土压力的转移机理及其计算[J]. 公路, 2011, 56(11): 214–218. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201111053.htm

    GAO Deng. Transfer mechanism and calculation of vertical soil pressure acted on shield tunnel in sandy soil layer[J]. Highway, 2011, 56(11): 214–218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201111053.htm

    [7] 陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117–122. http://cge.nhri.cn/cn/article/id/12371

    CHEN Ren-peng, LI Jun, CHEN Yun-min, et al. Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117–122. (in Chinese) http://cge.nhri.cn/cn/article/id/12371

    [8]

    CHEN Y M, CAO W P, CHEN R P, et al. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments[J]. Geotextiles and Geomembranes, 2008, 26(2): 164–174. doi: 10.1016/j.geotexmem.2007.05.004

    [9]

    SADEK S, ISKANDER M G, LIU J Y. Geotechnical properties of transparent silica[J]. Canadian Geotechnical Journal, 2002, 39(1): 111–124. doi: 10.1139/t01-075

    [10]

    NI Q, HIRD C C, GUYMER I. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry[J]. Géotechnique, 2010, 60(2): 121–132. doi: 10.1680/geot.8.P.052

    [11]

    AHMED M, ISKANDER M. Analysis of tunneling-induced ground movements using transparent soil models[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5): 525–535. doi: 10.1061/(ASCE)GT.1943-5606.0000456

    [12] 蒋明镜, 杜文浩, 奚邦禄. 净砂与胶结砂土Trapdoor试验离散元数值模拟[J]. 地球科学与环境学报, 2018, 40(3): 347–354. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201803013.htm

    JIANG Ming-jing, DU Wen-hao, XI Bang-lu. Distinct element numerical simulation of trapdoor tests for pure and cemented sands[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 347–354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201803013.htm

    [13] 徐超, 张兴亚, 韩杰, 等. 加载条件对土拱效应影响的Trapdoor模型试验研究[J]. 岩土工程学报, 2019, 41(4): 726–732. doi: 10.11779/CJGE201904016

    XU Chao, ZHANG Xing-ya, HAN Jie, et al. Trapdoor model tests on impact of loading conditions on soil arching effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 726–732. (in Chinese) doi: 10.11779/CJGE201904016

    [14]

    ISKANDER M G, SADEK S, LIU J Y. Optical measurement of deformation using transparent silica gel to model sand[J]. International Journal of Physical Modelling in Geotechnics, 2002, 2(4): 13–26.

    [15]

    HAN J, WANG F, AL-NADDAF M, et al. Closure to "progressive development of two-dimensional soil arching with displacement" by Jie Han, Fei Wang, Mahdi Al-naddaf, and Chao xu[J]. International Journal of Geomechanics, 2019, 19(3): 1–3.

    [16]

    IGLESIA G R, EINSTEIN H H, WHITMAN R V. Determination of Vertical Loading on Underground Structures Based on an Arching Evolution Concept[C]// Geo-engineering for Underground Facilities. Reston, 1999: 495–506.

图(7)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 网络出版日期:  2023-03-26
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回