• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于振动台试验的粉质黏土隧道抗震计算方法修正

马险峰, 刘正好, 吴迪, 董一今

马险峰, 刘正好, 吴迪, 董一今. 基于振动台试验的粉质黏土隧道抗震计算方法修正[J]. 岩土工程学报, 2022, 44(S2): 1-5. DOI: 10.11779/CJGE2022S2001
引用本文: 马险峰, 刘正好, 吴迪, 董一今. 基于振动台试验的粉质黏土隧道抗震计算方法修正[J]. 岩土工程学报, 2022, 44(S2): 1-5. DOI: 10.11779/CJGE2022S2001
MA Xian-feng, LIU Zheng-hao, WU Di, DONG Yi-jin. Correction of seismic calculation method for silty clay tunnels based on shaking table test[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 1-5. DOI: 10.11779/CJGE2022S2001
Citation: MA Xian-feng, LIU Zheng-hao, WU Di, DONG Yi-jin. Correction of seismic calculation method for silty clay tunnels based on shaking table test[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 1-5. DOI: 10.11779/CJGE2022S2001

基于振动台试验的粉质黏土隧道抗震计算方法修正  English Version

基金项目: 

山东省重点研发计划项目(重大科技创新工程) 2021CXGC011203

详细信息
    作者简介:

    马险峰(1972—),男,河南沈丘人,博士,教授,主要从事岩土物理模型试验、地下结构抗震等方面的教学和科研工作。E-mail: xf.ma@tongji.edu.cn

  • 中图分类号: TU432

Correction of seismic calculation method for silty clay tunnels based on shaking table test

  • 摘要: 地下结构的地震响应特性对地层特性具有较强敏感性。基于振动台模型试验,提出了一种粉质黏土隧道的结构动力时程计算方法,并计算确定了适合粉质黏土中隧道结构抗震计算的反应位移法。研究结果表明:采用经验公式计算的弯矩更接近动力时程的计算结果,而有限元计算的隧道结构的轴力更接近动力时程计算结果。同时,建议在粉质黏土隧道结构抗震计算过程中,将隧道埋深范围内土层相对位移简化为线性变化,并乘以系数0.7;地基弹簧刚度乘以系数1.1。研究结论可为粉质黏土隧道抗减震设计提供参考。
    Abstract: The seismic response characteristics of underground structures have a strong sensitivity to stratum characteristics. A structural dynamic time history analysis method for silty clay tunnels is proposed based on the shaking the table model tests. The response displacement method suitable for seismic calculation of tunnel structures in silty clay is determined. The results show that the bending moment calculated by the empirical formula is closer that by the dynamic time history method, while the axial force of tunnel structures calculated by the finite element method is closer to that by the dynamic time history method. It is suggested that in the seismic calculation of silty clay tunnel structures, the relative displacement of the soil layer within the buried depth of the tunnel should be simplified to linear change and multiplied by a coefficient of 0.7, and the foundation spring stiffness shouldbe multiplied by a coefficient of 1.1. The conclusions may provide a reference for the seismic design of silty clay tunnels.
  • 图  1   模型图

    Figure  1.   Diagram of model

    图  2   加速度放大系数试验结果和数值计算对比

    Figure  2.   Comparison of acceleration amplification factors between test results and numerical calculations

    图  3   加速度试验结果和数值计算对比

    Figure  3.   Comparison of acceleration between test results and numerical calculations

    图  4   土层位移数值计算和试验结果对比

    Figure  4.   Comparison between numerical calculations and test results of displacement of soil layer

    图  5   模型图

    Figure  5.   Diagram of model

    图  6   ABAQUS模型图

    Figure  6.   Diagram of ABAQUS model

    表  1   各工况阻尼系数表

    Table  1   Damping coefficients for various working cases

    工况
    α β α β
    汶川波 工况2 2.291667 0.003875 3.951149 0.002248
    工况6 2.5 0.008889 4.458333 0.004984
    工况10 2.083333 0.022404 5.22343 0.008936
    工况14 1.666667 0.017923 4.178744 0.007149
    El-Centro波 工况3 1.875 0.003945 3.605769 0.002051
    工况7 2.708333 0.013328 5.522876 0.006536
    工况11 3.020833 0.020912 7.376453 0.008564
    工况15 2.291667 0.030524 7.762097 0.009012
    济南波 工况4 1.458333 0.003319 2.916667 0.001659
    工况8 1.666667 0.006342 2.5 0.004228
    工况12 3.541667 0.017429 5.138889 0.012012
    工况16 2.953125 0.026367 7.03125 0.014063
    下载: 导出CSV

    表  2   模型参数表

    Table  2   Model parameters

    材料 弹性模量/MPa 黏聚力
    /kPa
    摩擦角
    /(°)
    济南粉质黏土 7.6 3.4 15
    16 0.1 38
    隧道(有机玻璃) 3300
    下载: 导出CSV

    表  3   工况表

    Table  3   Working cases

    工况 输入波类型 工况代号 加速度峰值/g
    1 白噪声 WN1 0.07
    2
    3
    4
    汶川波
    El-Centro
    济南人工波
    WC2
    EL3
    JN4
    0.143
    5 白噪声 WN5 0.07
    6
    7
    8
    汶川波
    El-Centro
    济南人工波
    WC6
    EL7
    JN8
    0.410
    9 白噪声 WN9 0.07
    10
    11
    12
    汶川波
    El-Centro
    济南人工波
    WC10
    EL11
    JN12
    0.6
    13 白噪声 WN13 0.07
    14
    15
    16
    汶川波
    El-Centro
    济南人工波
    WC14
    EL15
    JN16
    0.918
    17 白噪声 WN17 0.07
    下载: 导出CSV

    表  4   计算结果对比

    Table  4   Comparison of calculated results

    梁单元模量 内力 完全规范计算 有限元计算 动力时程计算
    E=35 GPa 轴力/N 90860 128000 101000
    弯矩/(N·m) 41200 60300 45700
    E=17.5 GPa 轴力/N 81080 114600 103300
    弯矩/(N·m) 21900 32720 24780
    E=7 GPa 轴力/N 73020 103200 96190
    弯矩/(N·m) 9300 14100 10380
    E=3.5 GPa 轴力/N 67640 94900 90000
    弯矩/(N·m) 4890 7460 5214
    下载: 导出CSV

    表  5   参数敏感性因子表

    Table  5   Sensitivity factors of parameters

    内力 相对位移 地层剪力 弹簧刚度
    轴力 0.379 0.621 0.235
    弯矩 0.432 0.572 2.71
    下载: 导出CSV

    表  6   各种方法计算结果与动力时程计算结果相对误差表

    Table  6   Relative errors between calculated results by various methods and dynamic time history method

    隧道弹模/GPa 内力 完全规范 有限元计算 新方法
    E=35 轴力 10.00% 26.73% 8.12%
    弯矩 9.85% 31.95% 1.75%
    E=17.5 轴力 21.26% 11.65% 4.48%
    弯矩 11.69% 31.85% 3.83%
    E=7 轴力 24.12% 7.07% 7.37%
    弯矩 10.58% 35.58% 2.21%
    E=3.5 轴力 24.89% 5.44% 8.33%
    弯矩 6.14% 43.19% 3.38%
    下载: 导出CSV
  • [1] 城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.

    Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)

    [2]

    ZHONG Z L, SHEN Y Y, ZHAO M, et al. Seismic performance evaluation of two-story and three-span subway station in different engineering sites[J]. Journal of Earthquake Engineering, 2022, 26(14): 7505–7535. doi: 10.1080/13632469.2021.1964647

    [3] 李海波, 马行东, 李俊如, 等. 地震荷载作用下地下岩体洞室位移特征的影响因素分析[J]. 岩土工程学报, 2006, 28(3): 358–362. doi: 10.3321/j.issn:1000-4548.2006.03.015

    LI Hai-bo, MA Xing-dong, LI Jun-ru, et al. Study on influence factors of rock cavern displacement under earthquake[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 358–362. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.015

    [4]

    MA C, LU D C, DU X L, et al. Seismic performance of a rectangular subway station with earth retaining system[J]. Earthquake Engineering and Engineering Vibration, 2022, 21(1): 221-236. doi: 10.1007/s11803-021-2069-9

    [5]

    XU H, LI T B, XIA L, et al. Shaking table tests on seismic measures of a model mountain tunnel[J]. Tunnelling and Underground Space Technology, 2016, 60: 197–209. doi: 10.1016/j.tust.2016.09.004

    [6]

    KAWAMATA Y, NAKAYAMA M, TOWHATA I, et al. Dynamic behaviors of underground structures in E-Defense shaking experiments[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 24–39. doi: 10.1016/j.soildyn.2015.11.008

    [7]

    RABETI MOGHADAM M, et al. Seismic ground motion amplification pattern induced by a subway tunnel: shaking table testing and numerical simulation[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 81–97. doi: 10.1016/j.soildyn.2016.01.002

    [8] 冯宁宁. 济南粉质黏土中地铁隧道振动台试验及地震响应计算研究[D]. 上海: 同济大学, 2018.

    FENG Ning-ning. Shaking Table Test and Seismic Response Calculation of Subway Tunnel in Jinan Silty Clay[D]. Shanghai: Tongji University, 2018. (in Chinese)

    [9] 潘旦光, 高莉莉. Rayleigh阻尼系数解法比较及对结构地震反应影响[J]. 工程力学, 2015, 32(6): 192–199. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201506027.htm

    PAN Dan-guang, GAO Li-li. Comparison of determination methods for Rayleigh damping coefficients and effects on seismic responses of structures[J]. Engineering Mechanics, 2015, 32(6): 192–199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201506027.htm

图(6)  /  表(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 网络出版日期:  2023-03-26
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回