Correction of seismic calculation method for silty clay tunnels based on shaking table test
-
摘要: 地下结构的地震响应特性对地层特性具有较强敏感性。基于振动台模型试验,提出了一种粉质黏土隧道的结构动力时程计算方法,并计算确定了适合粉质黏土中隧道结构抗震计算的反应位移法。研究结果表明:采用经验公式计算的弯矩更接近动力时程的计算结果,而有限元计算的隧道结构的轴力更接近动力时程计算结果。同时,建议在粉质黏土隧道结构抗震计算过程中,将隧道埋深范围内土层相对位移简化为线性变化,并乘以系数0.7;地基弹簧刚度乘以系数1.1。研究结论可为粉质黏土隧道抗减震设计提供参考。Abstract: The seismic response characteristics of underground structures have a strong sensitivity to stratum characteristics. A structural dynamic time history analysis method for silty clay tunnels is proposed based on the shaking the table model tests. The response displacement method suitable for seismic calculation of tunnel structures in silty clay is determined. The results show that the bending moment calculated by the empirical formula is closer that by the dynamic time history method, while the axial force of tunnel structures calculated by the finite element method is closer to that by the dynamic time history method. It is suggested that in the seismic calculation of silty clay tunnel structures, the relative displacement of the soil layer within the buried depth of the tunnel should be simplified to linear change and multiplied by a coefficient of 0.7, and the foundation spring stiffness shouldbe multiplied by a coefficient of 1.1. The conclusions may provide a reference for the seismic design of silty clay tunnels.
-
Keywords:
- silty clay tunnel /
- seismic response /
- numerical simulation /
- seismic calculation
-
-
表 1 各工况阻尼系数表
Table 1 Damping coefficients for various working cases
工况 土 砂 α β α β 汶川波 工况2 2.291667 0.003875 3.951149 0.002248 工况6 2.5 0.008889 4.458333 0.004984 工况10 2.083333 0.022404 5.22343 0.008936 工况14 1.666667 0.017923 4.178744 0.007149 El-Centro波 工况3 1.875 0.003945 3.605769 0.002051 工况7 2.708333 0.013328 5.522876 0.006536 工况11 3.020833 0.020912 7.376453 0.008564 工况15 2.291667 0.030524 7.762097 0.009012 济南波 工况4 1.458333 0.003319 2.916667 0.001659 工况8 1.666667 0.006342 2.5 0.004228 工况12 3.541667 0.017429 5.138889 0.012012 工况16 2.953125 0.026367 7.03125 0.014063 表 2 模型参数表
Table 2 Model parameters
材料 弹性模量/MPa 黏聚力
/kPa摩擦角
/(°)济南粉质黏土 7.6 3.4 15 砂 16 0.1 38 隧道(有机玻璃) 3300 表 3 工况表
Table 3 Working cases
工况 输入波类型 工况代号 加速度峰值/g 1 白噪声 WN1 0.07 2
3
4汶川波
El-Centro
济南人工波WC2
EL3
JN40.143 5 白噪声 WN5 0.07 6
7
8汶川波
El-Centro
济南人工波WC6
EL7
JN80.410 9 白噪声 WN9 0.07 10
11
12汶川波
El-Centro
济南人工波WC10
EL11
JN120.6 13 白噪声 WN13 0.07 14
15
16汶川波
El-Centro
济南人工波WC14
EL15
JN160.918 17 白噪声 WN17 0.07 表 4 计算结果对比
Table 4 Comparison of calculated results
梁单元模量 内力 完全规范计算 有限元计算 动力时程计算 E=35 GPa 轴力/N 90860 128000 101000 弯矩/(N·m) 41200 60300 45700 E=17.5 GPa 轴力/N 81080 114600 103300 弯矩/(N·m) 21900 32720 24780 E=7 GPa 轴力/N 73020 103200 96190 弯矩/(N·m) 9300 14100 10380 E=3.5 GPa 轴力/N 67640 94900 90000 弯矩/(N·m) 4890 7460 5214 表 5 参数敏感性因子表
Table 5 Sensitivity factors of parameters
内力 相对位移 地层剪力 弹簧刚度 轴力 0.379 0.621 0.235 弯矩 0.432 0.572 2.71 表 6 各种方法计算结果与动力时程计算结果相对误差表
Table 6 Relative errors between calculated results by various methods and dynamic time history method
隧道弹模/GPa 内力 完全规范 有限元计算 新方法 E=35 轴力 10.00% 26.73% 8.12% 弯矩 9.85% 31.95% 1.75% E=17.5 轴力 21.26% 11.65% 4.48% 弯矩 11.69% 31.85% 3.83% E=7 轴力 24.12% 7.07% 7.37% 弯矩 10.58% 35.58% 2.21% E=3.5 轴力 24.89% 5.44% 8.33% 弯矩 6.14% 43.19% 3.38% -
[1] 城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014. Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
[2] ZHONG Z L, SHEN Y Y, ZHAO M, et al. Seismic performance evaluation of two-story and three-span subway station in different engineering sites[J]. Journal of Earthquake Engineering, 2022, 26(14): 7505–7535. doi: 10.1080/13632469.2021.1964647
[3] 李海波, 马行东, 李俊如, 等. 地震荷载作用下地下岩体洞室位移特征的影响因素分析[J]. 岩土工程学报, 2006, 28(3): 358–362. doi: 10.3321/j.issn:1000-4548.2006.03.015 LI Hai-bo, MA Xing-dong, LI Jun-ru, et al. Study on influence factors of rock cavern displacement under earthquake[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 358–362. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.015
[4] MA C, LU D C, DU X L, et al. Seismic performance of a rectangular subway station with earth retaining system[J]. Earthquake Engineering and Engineering Vibration, 2022, 21(1): 221-236. doi: 10.1007/s11803-021-2069-9
[5] XU H, LI T B, XIA L, et al. Shaking table tests on seismic measures of a model mountain tunnel[J]. Tunnelling and Underground Space Technology, 2016, 60: 197–209. doi: 10.1016/j.tust.2016.09.004
[6] KAWAMATA Y, NAKAYAMA M, TOWHATA I, et al. Dynamic behaviors of underground structures in E-Defense shaking experiments[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 24–39. doi: 10.1016/j.soildyn.2015.11.008
[7] RABETI MOGHADAM M, et al. Seismic ground motion amplification pattern induced by a subway tunnel: shaking table testing and numerical simulation[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 81–97. doi: 10.1016/j.soildyn.2016.01.002
[8] 冯宁宁. 济南粉质黏土中地铁隧道振动台试验及地震响应计算研究[D]. 上海: 同济大学, 2018. FENG Ning-ning. Shaking Table Test and Seismic Response Calculation of Subway Tunnel in Jinan Silty Clay[D]. Shanghai: Tongji University, 2018. (in Chinese)
[9] 潘旦光, 高莉莉. Rayleigh阻尼系数解法比较及对结构地震反应影响[J]. 工程力学, 2015, 32(6): 192–199. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201506027.htm PAN Dan-guang, GAO Li-li. Comparison of determination methods for Rayleigh damping coefficients and effects on seismic responses of structures[J]. Engineering Mechanics, 2015, 32(6): 192–199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201506027.htm