• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究

亓永帅, 高玉峰, 何稼, 周云东, 严柏杨

亓永帅, 高玉峰, 何稼, 周云东, 严柏杨. 可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究[J]. 岩土工程学报, 2024, 46(4): 823-832. DOI: 10.11779/CJGE20221554
引用本文: 亓永帅, 高玉峰, 何稼, 周云东, 严柏杨. 可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究[J]. 岩土工程学报, 2024, 46(4): 823-832. DOI: 10.11779/CJGE20221554
QI Yongshuai, GAO Yufeng, HE Jia, ZHOU Yundong, YAN Boyang. Effects of soluble soybean polysaccharides on solidifying aeolian sand by soybean urease-induced carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 823-832. DOI: 10.11779/CJGE20221554
Citation: QI Yongshuai, GAO Yufeng, HE Jia, ZHOU Yundong, YAN Boyang. Effects of soluble soybean polysaccharides on solidifying aeolian sand by soybean urease-induced carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 823-832. DOI: 10.11779/CJGE20221554

可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究  English Version

基金项目: 

国家自然科学基金面上项目 51978244

国家自然科学基金面上项目 51979088

国家自然科学基金面上项目 52078188

详细信息
    作者简介:

    亓永帅(1995—),男,博士研究生,主要从事生物岩土固化技术方向研究。E-mail: qyslovelove@163.com

    通讯作者:

    高玉峰, E-mail: yfgao66@163.com

  • 中图分类号: TU411

Effects of soluble soybean polysaccharides on solidifying aeolian sand by soybean urease-induced carbonate precipitation

  • 摘要: 大豆脲酶诱导碳酸钙沉积用于固化沙漠风积沙具有潜在价值,为提升固化的均匀性及效果,在提取的大豆脲酶溶液中加入可溶性大豆多糖(SSPS)用于诱导碳酸钙沉积反应过程。首先,在液体环境下分析了SSPS对大豆脲酶溶液特性及反应生成碳酸钙的影响,随后土体环境中采用单相灌注法固化风积沙,测试了胶结试样的无侧限抗压强度和三轴固结不排水剪切特性,并结合SEM探究了固化机理。结果表明:SSPS的添加量为1,3 g/L时虽轻微抑制脲酶活性,但几乎不影响溶液黏度,且更利于液体环境下生成方解石晶体,同时土体环境中提升了固化风积沙的强度以及改善了单相灌注固化的均匀性,其中3 g/L添加量时效果更佳。SEM观察分析显示,添加SSPS后,液体环境下生成了尺寸更大且更紧密的碳酸钙晶体,土体环境中更多更紧密的碳酸钙晶体分布在沙颗粒间接触点处,从而增强了胶结作用效果。
    Abstract: The soybean urease-induced carbonate precipitation is potentially valuable for solidifying desert aeolian sand. In order to improve the uniformity and effects of solidification, the soluble soybean polysaccharide (SSPS) is added to the extracted soybean-urease solution to induce carbonate precipitation. Firstly, the impact of SSPS on the characteristics of soybean-urease solution and the formation of calcium carbonate in soil-free solution are analyzed. Then, the one-phase injection method is used to solidify the aeolian sand in the soil environment. The unconfined compressive strength and triaxial consolidated undrained shear characteristics of the cemented samples are tested, and the solidification mechanism is explored with SEM. The results show that the addition of SSPS at 1 g/L and 3 g/L lightly inhibits soybean-urease activity but hardly affects the viscosity of soybean-urease solution, and more calcite crystals are generated in soil-free solution. At the same time, the strength and uniformity of the solidified aeolian sand are improved. The effects are better when the additive amount of SSPS is 3 g/L. The SEM results show that after adding SSPS, larger and more compact calcium carbonate crystals are formed in soil-free solution, and more and more compact calcium carbonate crystals are distributed at the contact points between the sand particles in the soil environment, thus enhancing the solidification effects.
  • 图  1   添加不同SSPS浓度下的碳酸钙质量

    Figure  1.   Masses of CaCO3 at different SSPS concentrations

    图  2   添加不同浓度SSPS下的沉淀物XRD图谱

    Figure  2.   XRD patterns of precipitated substances at different SSPS concentrations

    图  3   添加3 g/L SSPS不同处理遍数下的无侧限抗压强度

    Figure  3.   Unconfined compressive strengths at different times of treatment with adding 3 g/L SSPS

    图  4   不同处理遍数下沙柱不同位置碳酸钙含量

    Figure  4.   Calcium carbonate contents at different positions of sand column under different times of treatment

    图  5   添加不同浓度SSPS的胶结试样应力-应变关系曲线

    Figure  5.   Stress-strain curves of biocemented samples at different SSPS concentrations

    图  6   添加不同浓度SSPS的胶结试样应力比-应变关系曲线

    Figure  6.   Stress ratio-strain curves of biocemented samples at different SSPS concentrations

    图  7   添加不同浓度SSPS的液体环境沉淀物SEM图

    Figure  7.   SEM images of precipitated substances in soil-free solution at different SSPS concentrations

    图  8   不同方案处理2遍的沙柱SEM图(放大倍数为300倍)

    Figure  8.   SEM images of sand column biocemented twice by different schemes (magnification of 300×)

    图  9   不同方案处理2遍的沙柱SEM图(放大倍数为2400倍)

    Figure  9.   SEM images of sand column biocemented twice by different schemes (magnification of 2400×)

    图  10   两种方案处理4遍的沙柱SEM图

    Figure  10.   SEM images of sand column after biocemented 4 times by two different schemes

    图  11   碳酸钙分布示意图

    Figure  11.   Distribution of calcium carbonate

    表  1   沙柱固化试验方案

    Table  1   Test schemes for sand column treatment

    编号 调节pH SSPS/(g·L-1) 处理遍数
    1 5.0 0 1
    2 5.0 0 2
    3 5.0 1 1
    4 5.0 1 2
    5 5.0 3 1
    6 5.0 3 2
    7 5.0 3 4
    8 5.0 3 6
    9 6.7 0 1
    10 6.7 0 2
    11 6.7 3 1
    12 6.7 3 2
    13 6.7 3 4
    下载: 导出CSV

    表  2   添加SSPS后大豆脲酶溶液特性

    Table  2   Characteristics of soybean-urease solution after adding SSPS

    试样 脲酶活性/(mM·min-1) 黏度/(mPa·s-1) 张角/%
    去离子水 1.1 10.7
    1 g/L SSPS 1.1 10.8
    3 g/L SSPS 1.4 14.0
    60 g/L+pH 5.0 5.56 1.3 13.6
    60 g/L+pH 5.0+1 g/L SSPS 5.31 1.3 13.4
    60 g/L+pH 5.0+3 g/L SSPS 4.93 1.4 14.5
    下载: 导出CSV
  • [1]

    CHENG L, SHAHIN M A, CHU J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 2018, 14(3): 615-626.

    [2]

    CUI M J, LAI H J, HOANG T, et al. Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement[J]. Acta Geotechnica, 2021, 17(7): 2931-2941.

    [3]

    YANG Y, CHU J, LIU H L, et al. Improvement of uniformity of biocemented sand column using CH3COOH-buffered one-phase-low-pH injection method[J]. Acta Geotechnica, 2023, 18(1): 413-428. doi: 10.1007/s11440-022-01576-8

    [4]

    CUI M J, LAI H J, WU S F, et al. Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria-induced carbonate precipitation[J]. Géotechnique, 2024, 74(1): 18-26. doi: 10.1680/jgeot.21.00131

    [5] 肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511-519. doi: 10.11779/CJGE202103014

    XIAO Peng, LIU Hanlong, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. (in Chinese) doi: 10.11779/CJGE202103014

    [6]

    XIAO Y, WANG Y, WANG S, et al. Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method[J]. Acta Geotechnica, 2021, 16(5): 1417-1427. doi: 10.1007/s11440-020-01122-4

    [7]

    MENG H, SHU S, GAO Y F, et al. Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement[J]. Engineering Geology, 2021, 294: 106374. doi: 10.1016/j.enggeo.2021.106374

    [8] 徐望清, 郑俊杰, 崔明娟, 等. 引入脲酶抑制剂的微生物固化砂土试验研究[J]. 华中科技大学学报(自然科学版), 2020, 48(10): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202010020.htm

    XU Wangqing, ZHENG Junjie, CUI Mingjuan, et al. Experimental study on microorganism solidifying sand with urease inhibitor[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48(10): 114-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202010020.htm

    [9] 范广才, 缪林昌, 孙潇昊, 等. 脲酶抑制剂对EICP防风固沙效果的影响研究[J]. 防灾减灾工程学报, 2022, 42(5): 1019-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202205017.htm

    FAN Guangcai, MIAO Linchang, SUN Xiaohao, et al. Effects researches of urease inhibitor on wind-breaking and sand-fixation of EICP[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(5): 1019-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202205017.htm

    [10]

    HAMDAN N, ZHAO Z, MUJICA M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016089. doi: 10.1061/(ASCE)MT.1943-5533.0001604

    [11]

    MIAO L C, WU L Y, SUN X H, et al. Method for solidifying desert sands with enzyme-catalysed mineralization[J]. Land Degradation & Development, 2019, 31(11): 1317-1324.

    [12]

    ALMAJED A, LEMBOYE K, ARAB M G, et al. Mitigating wind erosion of sand using biopolymer-assisted EICP technique[J]. Soils and Foundations, 2020, 60(2): 356-371. doi: 10.1016/j.sandf.2020.02.011

    [13]

    YAO D F, WU J, WANG G W, et al. Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): mechanical property and underlying mechanism[J]. Acta Geotechnica, 2021, 16(5): 1401-1416. doi: 10.1007/s11440-020-01112-6

    [14] 谭永辉, 王文生, 秦玉昌, 等. 豆渣中水溶性大豆多糖的提取与应用[J]. 大豆科学, 2008, 27(1): 150-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201103034.htm

    TAN Yonghui, WANG Wensheng, QIN Yuchang, et al. Extraction and application of soluble soybean polysaccharides from bean curd waste[J]. Soybean Science, 2008, 27(1): 150-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201103034.htm

    [15] 吴敏, 高玉峰, 何稼, 等. 大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J]. 岩土工程学报, 2020, 42(10): 1914-1921. doi: 10.11779/CJGE202010017

    WU Min, GAO Yufeng, HE Jia, et al. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. (in Chinese) doi: 10.11779/CJGE202010017

    [16]

    WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. doi: 10.1080/01490450701436505

    [17]

    CHOI S G, PARK S S, WU S F, et al. Methods for calcium carbonate content measurement of biocemented soils[J]. Journal of Materials in Civil Engineering, 2017, 29(11): 06017015. doi: 10.1061/(ASCE)MT.1943-5533.0002064

    [18]

    GAO Y F, HANG L, HE J, et al. Mechanical behaviour of biocemented sands at various treatment levels and relative densities[J]. Acta Geotechnica, 2019, 14(3): 697-707. doi: 10.1007/s11440-018-0729-3

    [19]

    NAKAMURA A, FURUTA H, KATO M, et al. Effect of soybean soluble polysaccharides on the stability of milk protein under acidic conditions[J]. Food Hydrocolloids, 2003, 17(3): 333-343. doi: 10.1016/S0268-005X(02)00095-4

    [20]

    CAI Y, CAI B, IKEDA S. Stabilization of milk proteins in acidic conditions by pectic polysaccharides extracted from soy flour[J]. Journal of Dairy Science, 2017, 100(10): 7793-7801. doi: 10.3168/jds.2016-12190

    [21] 沈泰宇, 李贤, 汪时机, 等. 微生物固化砂质黏性紫色土的三轴抗剪强度与浸水抗压强度[J]. 农业工程学报, 2019, 35(21): 135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201921016.htm

    SHEN Taiyu, LI Xian, WANG Shiji, et al. Triaxial shear strength and immersion compressive strength of sandy clayey purple soil treated by microbial induced calcite precipitation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 135-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201921016.htm

    [22]

    CHENG L, CORD-RUWISCH R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2013, 50(1): 81-90. doi: 10.1139/cgj-2012-0023

    [23]

    CUI M J, ZHENG J J, CHU J, et al. Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1377-1389. doi: 10.1007/s11440-020-01099-0

图(11)  /  表(2)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  64
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-27
  • 网络出版日期:  2023-06-12
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回