Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于低场核磁共振技术PVC-P土工膜细观渗透机理研究

张宪雷, 尹春杰, 马仲阳, 谷晓雨

张宪雷, 尹春杰, 马仲阳, 谷晓雨. 基于低场核磁共振技术PVC-P土工膜细观渗透机理研究[J]. 岩土工程学报, 2024, 46(4): 880-889. DOI: 10.11779/CJGE20221546
引用本文: 张宪雷, 尹春杰, 马仲阳, 谷晓雨. 基于低场核磁共振技术PVC-P土工膜细观渗透机理研究[J]. 岩土工程学报, 2024, 46(4): 880-889. DOI: 10.11779/CJGE20221546
ZHANG Xianlei, YIN Chunjie, MA Zhongyang, GU Xiaoyu. Micropermeation mechanism of PVC-P geomembranes by low-field NMR technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 880-889. DOI: 10.11779/CJGE20221546
Citation: ZHANG Xianlei, YIN Chunjie, MA Zhongyang, GU Xiaoyu. Micropermeation mechanism of PVC-P geomembranes by low-field NMR technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 880-889. DOI: 10.11779/CJGE20221546

基于低场核磁共振技术PVC-P土工膜细观渗透机理研究  English Version

基金项目: 

国家自然科学基金项目 52009045

详细信息
    作者简介:

    张宪雷(1984—),男,博士,副教授,主要从事膜防渗结构方面研究工作。E-mail: zhangxianlei@ncwu.edu.cn

  • 中图分类号: TU43

Micropermeation mechanism of PVC-P geomembranes by low-field NMR technology

  • 摘要: PVC-P土工膜的防渗性能是膜防渗结构乃至工程安全运行的关键。为避免传统上用渗透系数表征其渗透性能的弊端,运用多组渗透压力下土工膜垂直渗透试验数据和基于低场核磁共振技术获取的孔隙度,构建了渗透流量-孔隙度数学模型,结合孔隙和孔径动态分布探讨了用孔隙度评价其垂直渗透性能的适用性。结果表明:以1H原子为探针的低场核磁共振技术能够准确量测膜内孔隙和孔径分布;依据T2特征谱弛豫时间划分的微孔隙、中孔隙和大孔隙的占比以及孔隙范围内孔径的萎缩或发育是孔隙度变化的根本原因;孔隙度与渗透流量关联性较强,利用量测的饱和PVC-P土工膜孔隙度和构建的模型能够准确预测渗透流量。研究成果表明基于低场核磁共振技术测得的孔隙度可用于PVC-P土工膜防渗性能评价。
    Abstract: The impermeability of PVC-P geomembranes is of significant importance to the safe operation of a project. To avoid the drawbacks of adopting the permeability coefficient to characterize permeability traditionally, a mathematical model for porosity and seepage discharge is proposed based on the results of the vertical permeability tests and the porosity obtained from the low-field NMR tests, and the applicability of porosity to evaluate the permeability is explored. The results show that the low-field NMR technology with 1H atoms as the probe can accurately measure the distribution of pores and pore radiis. The proportions of the micropores, mesopores and macropores and the shrinkage and development of the pore radii are primarily responsible for the variation of the porosity. The porosity is closely correlated with the seepage discharge, and the proposed model can accurately predict the seepage discharge. Furthermore, the porosity can evaluate the impermeability of PVC-P geomembranes.
  • 图  1   土工膜垂直渗透仪示意图

    Figure  1.   Schematic diagram of geomembrane vertical penetrator

    图  2   低场核磁共振试验示意图

    Figure  2.   Schematic diagram of low-field NMR tests

    图  3   单位体积信号强度与孔隙度关系曲线

    Figure  3.   Relationship between signal intensity per unit volume and porosity

    图  4   PVC-P土工膜渗透量与渗透流量曲线

    Figure  4.   Curves of permeable water and seepage discharge of PVC-P geomembranes

    图  5   0.8 MPa渗透压力PVC-P土工膜低场核磁共振成果

    Figure  5.   Results of low-field NMR test for PVC-P geomembrane at 0.8 MPa

    图  6   所有PVC-P土工膜T2特征谱

    Figure  6.   T2 characteristic spectra of all PVC-P geomembranes

    图  7   同一试样不同压强下T2特征谱

    Figure  7.   T2 characteristic spectra of same sample under different pressures

    图  8   不同渗透压力下PVC-P土工膜孔径变化

    Figure  8.   Variation of pore radius of PVC-P geomembranes with percolation pressure

    图  9   试验压力下PVC-P土工膜3类孔隙占比

    Figure  9.   Proportions of three types of pores in PVC-P geomembranes under test pressures

    图  10   孔隙信号总强度-渗透压力分布趋势

    Figure  10.   Variation of total signal intensity of pores with percolation pressure

    图  11   孔隙度和渗透流量的分布趋势

    Figure  11.   Distribution of porosity and seepage discharge under different pressures

    图  12   渗透流量q与孔隙度n关系

    Figure  12.   Relationship between seepage discharge q and porosity n

    表  1   PVC-P土工膜主要参数

    Table  1   Main parameters of PVC-P geomembranes

    技术指标 执行技术标准 横向 纵向 单位
    厚度 ASTM D
    5199-12[22]
    2.0±0.2 2.0±0.2 mm
    单位面积质量 ASTM D
    5261-10[23]
    1.77 1.77 g/cm2
    断裂强度 ASTM D
    6693M-04[24]
    9.65 10.10 MPa
    断裂延伸率 ASTM D
    6693M-04
    310.04 289.99 %
    屈服强度 ASTM D
    6693M-04
    2.57 3.39 MPa
    屈服延伸率 ASTM D
    6693M-04
    49.85 49.10 %
    下载: 导出CSV

    表  2   渗透流量-孔隙度数学模型拟合成果

    Table  2   Simulated results of mathematical model for permeability flow-porosity

    渗透流量模型公式 拟合参数值 相关系数R2
    式(15) ζ=32.28 0.929
    式(16) λ=38.55,m=3.971 0.992
    式(17) χ=10.97C=0.862 0.980
    下载: 导出CSV
  • [1] 束一鸣. 中国水库大坝土工膜防渗工程进展[J]. 水利水电科技进展, 2015, 35(5): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201505005.htm

    SHU Yiming. Progress in geomembrane barriers for seepage prevention in reservoirs and dams in China[J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 20-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201505005.htm

    [2]

    CEN W J, WANG H, SUN Y J, et al. Monotonic and cyclic shear behaviour of geomembrane-sand interface[J]. Geosynthetics International, 2018, 25(4): 369-377. doi: 10.1680/jgein.18.00017

    [3]

    TOUZE N. Healing the world: a geosynthetics solution[J]. Geosynthetics International, 2021, 28(1): 1-31.

    [4] 宁宇, 喻建清, 崔留杰. 软岩堆石高坝土工膜防渗技术[J]. 水力发电, 2016, 42(5): 62-67, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201605020.htm

    NING Yu, YU Jianqing, CUI Liujie. Anti-seepage of geomembrane for high soft rock filling dam[J]. Water Power, 2016, 42(5): 62-67, 105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201605020.htm

    [5]

    KOERNER R M, WILKES J A. (2012). 2010 ICOLD bulletin on geomembrane sealing systems for dams[J]. Geosynthetics, 30(2): 34-36, 38, 40, 42-43.

    [6]

    CAZZUFFI D, GIOFFRÈ D. Lifetime assessment of exposed PVC-P geomembranes installed on Italian dams[J]. Geotextiles and Geomembranes, 2020, 48(2): 130-136. doi: 10.1016/j.geotexmem.2019.11.015

    [7]

    TOUZE-FOLTZ N, FARCAS F. Long-term performance and binder chemical structure evolution of elastomeric bituminous geomembranes[J]. Geotextiles and Geomembranes, 2017, 45(2): 121-130. doi: 10.1016/j.geotexmem.2017.01.003

    [8]

    KOERNER R M, HSUAN Y G, KOERNER G R. Lifetime predictions of exposed geotextiles and geomembranes[J]. Geosynthetics International, 2017, 24(2): 198-212. doi: 10.1680/jgein.16.00026

    [9]

    OZSU E, ACAR Y B. Liquid conduction tests for geomembranes[J]. Geotextiles and Geomembranes, 1992, 11(3): 291-318. doi: 10.1016/0266-1144(92)90005-U

    [10]

    ELOY-GIORNI C, PELTE T, PIERSON P, et al. Water diffusion through geomembranes under hydraulic pressure[J]. Geosynthetics International, 1996, 3(6): 741-769. doi: 10.1680/gein.3.0083

    [11]

    AMINABHAVI T M, NAIK H G. Chemical compatibility testing of geomembranes-sorption/desorption, diffusion, permeation and swelling phenomena[J]. Geotextiles and Geomembranes, 1998, 16(6): 333-354. doi: 10.1016/S0266-1144(98)00017-X

    [12]

    LAMBERT S, TOUZE-FOLTZ N. A test for measuring permeability of geomembranes[C]// Proceedings Eurogeo, Bologna, 2000: 15-18.

    [13] 胡利文, 陈嘉鸥. 土工膜微结构破损机理分析[J]. 岩土力学, 2002, 23(6): 702-705. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200206008.htm

    HU Liwen, CHEN Jiaou. Analysis of damage for microstructure of geomembrane[J]. Rock and Soil Mechanics, 2002, 23(6): 702-705. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200206008.htm

    [14] 张光伟, 张虎元, 杨博. 复合土工膜渗透性能试验研究[J]. 水文地质工程地质, 2011, 38(5): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105013.htm

    ZHANG Guangwei, ZHANG Huyuan, YANG Bo. Experimental investigation of the permeability of composite geomembrane[J]. Hydrogeology and Engineering Geology, 2011, 38(5): 58-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105013.htm

    [15]

    MARCONE M F, WANG S, ALBABISH W, et al. Diverse food-based applications of nuclear magnetic resonance (NMR) technology[J]. Food Research International, 2013, 51(2): 729-747. doi: 10.1016/j.foodres.2012.12.046

    [16]

    CAI K, MARKLEY J L. NMR as a tool to investigate the processes of mitochondrial and cytosolic iron-sulfur cluster biosynthesis[J]. Molecules, 2018, 23(9): 23092213.

    [17]

    L I Y, JIANG G, LI X, et al. Quantitative investigation of water sensitivity and water locking damages on a low- permeability reservoir using the core flooding experiment and NMR test[J]. ACS omega, 2022, 7(5): 4444-4456. doi: 10.1021/acsomega.1c06293

    [18]

    ADAMS A, KWAMEN R, WOLDT B, et al. Nondestructive quantification of local plasticizer concentration in PVC by (1)H NMR relaxometry[J]. Macromol Rapid Commun, 2015, 36(24): 2171-2175. doi: 10.1002/marc.201500409

    [19] DU Yong-qiang, ZHENG Jian, YU Gui-bo, 等. Transverse relaxation characteristic and stress relaxation model considering molecular chains of HTPB coating based on pre-strained thermal aging[J]. 防务技术, 2021, 17(3): 821-828. doi: 10.3969/j.issn.2214-9147.2021.03.013

    DU Y Q, ZHENG J, YU G B, et al. Transverse relaxation characteristic and stress relaxation model considering molecular chains of HTPB coating based on pre-strained thermal aging[J]. Defence Technology, 2021, 17(3): 821-828. (in Chinese) doi: 10.3969/j.issn.2214-9147.2021.03.013

    [20]

    WEI L, CHAI S, XUE M, et al. Structural damage and shear performance degradation of fiber-lime-soil under freeze-thaw cycling[J]. Geotextiles and Geomembranes, 2022, 50(5): 845-857. doi: 10.1016/j.geotexmem.2022.04.005

    [21] 姚俊辉, 陶明, 郭陈响. 微波加热对致密砂岩孔隙水的影响[J]. 中南大学学报(自然科学版), 2022, 53(6): 2176-2185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206019.htm

    YAO Junhui, TAO Ming, GUO Chenxiang. Effect of microwave heating on pore water in tight sandstone[J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2176-2185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206019.htm

    [22]

    Standard Test Method for Measuring the Nominal Thickness of Geosynthetics: ASTM D5199-12[S]. West Conshohocken, PA, ASTM International, 2019.

    [23]

    Standard Test Method for Measuring Mass per Unit Area of Geotextiles: ASTM D5261—10[S]. West Conshohocken, PA, ASTM International, 2018.

    [24]

    Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes: ASTM D6693/D6693M-04[S]. West Conshohocken, PA, ASTM International, 2015.

    [25]

    ZHANG P, LU S, LI J, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)[J]. Marine and Petroleum Geology, 2018, 89: 775-785. doi: 10.1016/j.marpetgeo.2017.11.015

图(12)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 网络出版日期:  2023-06-01
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回