Stochastic analysis of fault dislocation induced by tunnel excavation considering distribution characteristics of joints in fracture zones
-
摘要: 隧道开挖往往会引起邻近断层错动,并进一步诱发岩爆、地震等灾害。然而,断层破碎带内部岩体物理力学特征复杂,不仅表现出非连续性、非线性和各向异性,还存在节理随机分布特征,隧道开挖诱发近断层错动机制仍不清晰。基于连续-离散耦合分析方法建立了含断层工程场地多尺度力学模型,采用基于离散单元法的人工合成岩体模型模拟断层破碎带,采用有限差分法描述断层上、下盘及内部隧道开挖影响下的宏观动力特征。开展了近断层隧道开挖多因素模拟,探究了断层岩体节理随机分布特征对近断层隧道开挖的影响规律。分析结果表明:破碎带内部节理随机性对隧道开挖诱发近断层错动影响显著;节理倾角均值越接近断层倾角,隧道开挖导致的近断层错动量越大;正交试验情况下,断层节理倾角方差对最终错动量均值大小影响较小;节理长度的均值和方差越大,断层破碎带越容易发生错动;节理密度越大,破碎带介质越破碎,断层带整体的强度和刚度越低,抵抗错动的能力也越弱。通过对比分析得出节理分布特征参数对断层错动量均值影响程度的排序分布:节理密度 > 节理倾角均值> 节理长度均值> 节理长度标准差 > 节理倾角标准差;且当显著性水平为0.05时,节理密度对断层错动量的影响达到显著水平(p < 0.05)。Abstract: Tunnel excavation often causes the dislocation of adjacent faults, and further induces rockbursts, earthquakes and other disasters. Due to the complex physical and mechanical characteristics of rock mass, the fault exhibits discontinuity, nonlinear and anisotropy and has the random distribution of joints, which makes the mechanism of adjacent fault dislocation induced by tunnel excavation still unclear. A multi-scale model is established based on the continuous-discrete coupling method. The synthetic rock mass model based on the discrete element method is used to simulate the fault damage zone, and the finite difference method is used to describe the macroscopic dynamic characteristics of the upper and lower walls. The influence laws of the random distribution characteristics of joints on the excavation simulation of a near-fault tunnel are explored. The results show that the randomness of joints in the fracture zone has a significant effect on fault dislocation. The fault dislocation increases with the mean dip angle of joints closer to that of fault. In the case of orthogonal tests, the variance of dip angle has small effects on the mean value of final dislocation. The increase of the mean and variance of joint length causes the fault prone to dislocation. The greater the joint density, the more broken the media in the fracture zone, the lower the overall strength and stiffness, and the weaker the resistance to dislocation. Through a comparative analysis, the influence degree of distribution characteristic parameters of joints on the mean value of fault dislocation is: density > mean value of dip angle > mean value of length > standard deviation of length > standard deviation of dip angle. When the significance level is 0.05, the influences of joint density on the momentum of fault dislocation reach a significant level (p < 0.05).
-
Keywords:
- fault dislocation /
- multi-scale coupling /
- randomness /
- tunnel excavation
-
-
表 1 DP模型参数
Table 1 Parameters of DP model
密度/(kg·m-3) 弹性模量/GPa 泊松比 黏聚力/kPa 内摩擦角/(°) 2200 8 0.3 400 31 表 2 平行黏结模型参数
Table 2 Parameters of parallel bonded model
线性组 平行黏结组 有效模量/GPa 刚度比 摩擦系数 有效模量/GPa 刚度比 摩擦角/(°) 抗拉强度/MPa 黏结强度/MPa 6.5 3.6 0.577 6.5 3.6 85 12 10 表 3 光滑节理模型参数及对应的宏观参数
Table 3 Parameters of smooth-joint model and corresponding macroscopic parameters
细观参数 宏观参数 法向刚度/GPa 切向刚度/GPa 黏结强度/kPa 抗拉强度/kPa 摩擦因数 黏聚力/kPa 摩擦角/(°) 20 6 4 1 0.3 21 16.3 表 4 正交设计表
Table 4 Orthogonal design table
编号 μdip/(°) σdip/(°) μlen/m σlen/m FD S1 40 20 4 1 1 S2 40 30 8 7 5 S3 40 40 12 3 4 S4 40 50 6 9 3 S5 40 60 10 5 2 S6 60 20 12 7 3 S7 60 30 6 3 2 S8 60 40 10 9 1 S9 60 50 4 5 5 S10 60 60 8 1 4 S11 80 20 10 3 5 S12 80 30 4 9 4 S13 80 40 8 5 3 S14 80 50 12 1 2 S15 80 60 6 7 1 S16 100 20 8 9 2 S17 100 30 12 5 1 S18 100 40 6 1 5 S19 100 50 10 7 4 S20 100 60 4 3 3 S21 120 20 6 5 4 S22 120 30 10 1 3 S23 120 40 4 7 2 S24 120 50 8 3 1 S25 120 60 12 9 5 表 5 观测点3错动量均值多因素方差分析结果
Table 5 Results of multivariate analysis of variance of dislocation at monitoring point No. 3
均值 误差平方和 自由度 均方 F检验值 p值 截距 138.255 1 138.225 741.732 0.000** 节理倾角均值 1.688 4 0.422 2.264 0.224 节理倾角标准差 0.082 4 0.021 0.11 0.972 节理长度均值 0.791 4 0.198 1.061 0.478 节理长度标准差 0.705 4 0.176 0.946 0.521 节理密度 15.848 4 3.962 21.26 0.006** 残差 0.745 4 0.186 R2 = 0.962 * p < 0.05 ** p < 0.01 表 6 观测点4错动量均值多因素方差分析结果
Table 6 Results of multivariate analysis of variance of dislocation at monitoring point No. 4
均值 误差平方和 自由度 均方 F检验值 p值 截距 132.951 1 132.951 621.294 0.000** 节理倾角均值 1.337 4 0.334 1.562 0.338 节理倾角标准差 0.123 4 0.031 0.144 0.956 节理长度均值 0.685 4 0.171 0.801 0.583 节理长度标准差 0.569 4 0.142 0.665 0.649 节理密度 8.978 4 2.245 10.489 0.021* 残差 0.856 4 0.214 R2 = 0.932 * p < 0.05 ** p < 0.01 表 7 观测点5错动量均值多因素方差分析结果
Table 7 Results of multivariate analysis of variance of dislocation at monitoring point No. 5
均值 误差平方和 自由度 均方 F检验值 p值 截距 74.61 1 74.61 2209.555 0.000** 节理倾角均值 0.511 4 0.128 3.783 0.113 节理倾角标准差 0.035 4 0.009 0.261 0.889 节理长度均值 0.241 4 0.06 1.783 0.295 节理长度标准差 0.207 4 0.052 1.532 0.345 节理密度 2.864 4 0.716 21.206 0.006** 残差 0.135 4 0.034 R2 = 0.966 * p < 0.05 ** p < 0.01 -
[1] MANOUCHEHRIAN A, CAI M. Analysis of rockburst in tunnels subjected to static and dynamic loads[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(6): 1031-1040. doi: 10.1016/j.jrmge.2017.07.001
[2] RINALDI A P, URPi L. Fault reactivation induced by tunneling activity in clay material: hints from numerical modeling[J]. Tunnelling and Underground Space Technology, 2020, 102: 103453. doi: 10.1016/j.tust.2020.103453
[3] MICHAEL R S, THOMAS J. Fault induced rock bursts and micro-tremors: experiences from the Gotthard Base Tunnel[J]. Tunnelling & Underground Space Technology, 2018, 81: 358-366.
[4] ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts[J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59-65. doi: 10.1016/0886-7798(94)90010-8
[5] MANOUCHEHRIAN A, CAI M. Numerical modeling of rockburst near fault zones in deep tunnels[J]. Tunnelling and Underground Space Technology, 2018, 80: 164-180. doi: 10.1016/j.tust.2018.06.015
[6] ZHANG C, FENG X T, ZHOU H, et al. Case histories of four extremely intense rockbursts in deep tunnels[J]. Rock mechanics and rock engineering, 2012, 45: 275-288. doi: 10.1007/s00603-011-0218-6
[7] HUSEN S, KISSLING E, VON Deschwanden A. Induced seismicity during the construction of the Gotthard Base Tunnel, Switzerland: hypocenter locations and source dimensions[J]. Journal of Seismology, 2012, 16(2): 195-213. doi: 10.1007/s10950-011-9261-8
[8] 姜耀东, 王涛, 赵毅鑫, 等. 采动影响下断层活化规律的数值模拟研究[J]. 中国矿业大学学报, 2013, 42(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201301003.htm JIANG Yaodong, WANG Tao, ZHAO Yixin, et al. Numerical simulation of fault activation pattern induced by coal extraction[J]. Journal of China University of Mining & Technology, 2013, 42(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201301003.htm
[9] 张亚民, 马凤山, 王杰, 等. 陡倾断层上下盘开挖引起地表变形的数值模拟分析[J]. 中国地质灾害与防治学报, 2012, 23(3): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201203015.htm ZHANG Yamin, MA Fengshan, WANG Jie, et al. Numerical analysis on the ground deformation due to underground excavation in hanging walls and footwalls of steep faults[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(3): 61-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201203015.htm
[10] 蔡胜海. FLAC3D断层模拟中接触面法与弱化法的研究及应用[D]. 徐州: 中国矿业大学, 2016. CAI Shenghai. Study and Application of the Interface and Weaken Method in FLAC3D Fault Simulation[D]. Xuzhou: China University of Mining and Technology, 2016. (in Chinese)
[11] ZHONG Z L, WANG Z, ZHAO M, et al. Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement[J]. Tunnelling and Underground Space Technology, 2020(104): 103527.
[12] 禹海涛, 陈志伟. 基于连续-离散耦合方法的隧道开挖对近断层的影响机制研究[J]. 隧道与地下工程灾害防治, 2021(3): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202103003.htm YU Haitao, CHEN Zhiwei. Influence mechanism of tunnel excavation on adjacent fault based on FDM-DEM coupling method[J]. Hazard Control in Tunnelling and Underground Engineering, 2021(3): 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202103003.htm
[13] LIN H, SHENG B Y. Failure Characteristics of complicated random jointed rock mass under compressive-shear loading[J]. Geotechnical and Geological Engineering, 2021, 39(5): 3417-3435. doi: 10.1007/s10706-021-01701-6
[14] ZHANG C, LIU X, ZHU G, et al. Distribution patterns of rock mass displacement in deeply buried areas induced by active fault creep slip at engineering scale[J]. Journal of Central South University, 2020, 27(10): 2849-2863. doi: 10.1007/s11771-020-4514-8
[15] 陈欣, 周小涵, 许彬, 等. 裂隙岩体宏细观剪切损伤力学行为研究[J]. 岩石力学与工程学报, 2022, 41(12): 2509-2521. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202212011.htm CHEN Xin, ZHOU Xiaohan, XU Bin, et al. Investigation on the macro-meso shear damage mechanical behaviors of fractured rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(12): 2509-2521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202212011.htm
[16] 杨维忠, 陈胜可, 刘荣. SPSS统计分析从入门到精通[M]. 4版. 北京: 清华大学出版社, 2019. YANG Weizhong, CHEN Shengke, LIU Rong. SPSS Statistical Analysis from Entry to Mastery[M]. 4th ed. Beijing: Tsinghua University Press, 2019. (in Chinese)
-
期刊类型引用(8)
1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 . 百度学术
2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 . 百度学术
3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 . 百度学术
4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 . 百度学术
5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 . 百度学术
6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 . 百度学术
7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 . 百度学术
8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 . 百度学术
其他类型引用(3)
-
其他相关附件