• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

温度对自膨胀高聚物浆液在裂隙中扩散行为影响试验研究

贾赫扬, 李晓龙, 曹东东, 王珊珊, 桂云祥, 钟燕辉, 张蓓

贾赫扬, 李晓龙, 曹东东, 王珊珊, 桂云祥, 钟燕辉, 张蓓. 温度对自膨胀高聚物浆液在裂隙中扩散行为影响试验研究[J]. 岩土工程学报, 2024, 46(4): 794-802. DOI: 10.11779/CJGE20221530
引用本文: 贾赫扬, 李晓龙, 曹东东, 王珊珊, 桂云祥, 钟燕辉, 张蓓. 温度对自膨胀高聚物浆液在裂隙中扩散行为影响试验研究[J]. 岩土工程学报, 2024, 46(4): 794-802. DOI: 10.11779/CJGE20221530
JIA Heyang, LI Xiaolong, CAO Dongdong, WANG Shanshan, GUI Yunxiang, ZHONG Yanhui, ZHANG Bei. Experimental study on influences of temperature on diffusion behaviors of self-expanding polymer slurry in fractures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 794-802. DOI: 10.11779/CJGE20221530
Citation: JIA Heyang, LI Xiaolong, CAO Dongdong, WANG Shanshan, GUI Yunxiang, ZHONG Yanhui, ZHANG Bei. Experimental study on influences of temperature on diffusion behaviors of self-expanding polymer slurry in fractures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 794-802. DOI: 10.11779/CJGE20221530

温度对自膨胀高聚物浆液在裂隙中扩散行为影响试验研究  English Version

基金项目: 

国家自然科学基金项目 52178401

河南高校科技创新团队支持计划项目 23IRTSTHN014

河南省2021年水利科技攻关项目 72

中原英才计划项目 234200510014

详细信息
    作者简介:

    贾赫扬(1993—),男,博士,主要从事高聚物裂隙注浆理论与试验等方面的研究工作。E-mail: JiahyChina@outlook.com

    通讯作者:

    李晓龙, E-mail: lxl1977@zzu.edu.cn

  • 中图分类号: TU45

Experimental study on influences of temperature on diffusion behaviors of self-expanding polymer slurry in fractures

  • 摘要: 为了研究温度对膨胀型聚氨酯高聚物注浆材料在裂隙中扩散特性的影响,设计了平板裂隙注浆模型试验装置,以一种工程中应用的聚氨酯高聚物浆液为对象,开展了高聚物注浆系列试验,测试了不同浆液预热温度、环境温度、注浆量条件下高聚物浆液在平板裂隙中的扩散特性,得到了不同工况下浆液扩散速率、扩散范围以及浆液和裂隙壁内温度分布随时间变化情况。分析结果表明:浆液预热温度对高聚物扩散过程具有重要影响,相同注浆量条件下,预热温度越高,浆液扩散速率越快,初凝时间越早,浆液扩散半径随着预热温度的升高逐渐增大,低温下浆液扩散半径显著低于高温下的试验结果;浆液扩散过程与其化学反应进程不完全同步,其化学反应终止时间晚于浆液初凝时间;浆液温度随时间呈现先升高然后逐渐下降、变化速率由快至慢的演化特征,同一时刻注浆孔中心处温度最高,沿径向逐渐递减;浆液升温速率和温度峰值随预热温度和环境温度的升高而增大;浆液扩散过程中高聚物与裂隙壁间存在明显热传导效应。试验结果对于高聚物裂隙注浆机理研究和注浆技术研发具有参考作用。
    Abstract: In order to study the influences of temperature on the fracture diffusion characteristics of expansive polyurethane polymer grouting materials, a plate fracture grouting model test device is designed. With a polyurethane polymer slurry applied in engineering as the research object, a series of polymer grouting tests are carried out. The diffusion characteristics of polymer slurry in plate fractures under different slurry preheating temperatures, ambient temperatures and grouting amounts are tested. The changes of slurry diffusion rate, slurry diffusion range, and temperature distribution of slurry and fracture wall under different working conditions are obtained. The analysis results show that the preheating temperature of slurry has an important influence on the diffusion process of polymer. Under the same grouting amount, the higher the preheating temperature, the faster the slurry diffusion rate and the earlier the initial gel time. The slurry diffusion range gradually increases with the increase of the preheating temperature. The slurry diffusion radius at low temperatures is significantly lower than the test results at high temperatures. The slurry diffusion process is not synchronized with the chemical reaction process, and the chemical reaction termination time is later than the initial gel time. The slurry temperature firstly rises and then gradually decreases with time, and the change rate is from fast to slow. At the same time, the temperature at the center of the grouting hole is the highest and gradually decreases along the radial reaction. The rising rate and peak value of slurry temperature increase with the increase of the preheating temperature and ambient temperature. There is an obvious heat conduction between the slurry and the fracture wall during the process of slurry diffusion. The test results can be used as a reference for the researches on the polymer fracture grouting mechanism and grouting technology.
  • 图  1   试验装置示意图

    Figure  1.   Schematic plot of test device

    图  2   可视化裂隙注浆平台

    Figure  2.   Visual fracture grouting platform

    图  3   温度采集系统

    Figure  3.   Temperature acquisition system

    图  4   热电偶布置示意图

    Figure  4.   Schematic plot of thermocouple layout

    图  5   高聚物浆液在裂隙中扩散过程

    Figure  5.   Fracture diffusion process of polymer slurry

    图  6   注浆量500 g,预热温度40℃,环境温度30℃不同测点处高聚物温度随时间变化曲线

    Figure  6.   Variation curves of polymer temperature with time at different measuring points under grouting amount 500 g, preheating temperature 40℃ and ambient temperature 30℃

    图  7   注浆量500 g,预热温度40℃,环境温度30℃不同时刻高聚物浆液温度沿径向变化曲线

    Figure  7.   Radial variation curves of polymer temperature with time at different time under grouting amount 500 g, preheating temperature 40℃ and ambient temperature 30℃

    图  8   不同预热温度条件下高聚物扩散半径随时间变化曲线

    Figure  8.   Variation curves of polymer diffusion radius with time under different preheating temperature conditions

    图  9   不同注浆量时高聚物扩散半径-预热温度变化柱状图

    Figure  9.   Histograms of polymer diffusion radius-preheating temperature change under different grouting amounts

    图  10   不同注浆量时高聚物扩散半径、温度随时间变化曲线

    Figure  10.   Variation curves of polymer diffusion radius and temperature with time under different grouting amounts

    图  11   注浆量750 g不同预热温度、不同位置处浆液温度随时间变化曲线

    Figure  11.   Variation curves of slurry temperature with time at different preheating temperatures and different positions under grouting amount 750 g

    图  12   注浆量750 g不同预热温度、不同时刻浆液温度沿径向分布曲线

    Figure  12.   Distribution curves of slurry temperature along radial direction at different preheating temperatures and different time under grouting amount 750 g

    图  13   注浆量750 g,预热温度50℃不同环境温度不同位置处浆液温度随时间变化曲线

    Figure  13.   Variation curves of slurry temperature with time at different ambient temperatures and different positions under grouting amount 750 g and preheating temperature 50℃

    图  14   注浆量750 g,预热温度50℃不同环境温度不同时刻浆液温度沿径向分布曲线

    Figure  14.   Distribution curves of temperature along radial direction at different ambient temperatures and different time under grouting amount 750 g and preheating temperature 50℃

    图  15   注浆量750 g,预热温度50℃,环境温度30℃时高聚物温度、接触面温度及裂隙壁内温度随时间变化曲线

    Figure  15.   Variation curves of polymer temperature, contact surface temperature and wall temperature with time under grouting amount 750 g, preheating temperature 50℃ and ambient temperature 30℃

    图  16   注浆量750 g,预热温度50℃,环境温度30℃时不同时刻高聚物温度、接触面温度及壁面内温度沿径向分布曲线

    Figure  16.   Distribution curves of polymer temperature, contact surface temperature and wall temperature along radial direction under grouting amount 750 g, preheating temperature 50℃ and ambient temperature 30℃

    表  1   高聚物浆液材料配比

    Table  1   Proportioning of polymer slurry materials

    组分 原料 质量分数/%
    A组分 多亚甲基多苯基多异氰酸酯 100
    B组分 硬泡聚醚多元醇体系 35
    聚酯多元醇(PS-3152) 15
    阻燃剂(磷酸三乙酯) 10
    催化剂体系 2
    表面活性剂(L6950) 0.5
    物理发泡剂 5
    化学发泡剂 0.5
    其它 32
    下载: 导出CSV

    表  2   试验各影响因素取值

    Table  2   Values of influencing factors of tests

    编号 注浆量/g 浆液预热温度/℃ 环境温度/℃
    #1 500 30 20
    #2 625 40 30
    #3 750 50
    下载: 导出CSV
  • [1] 边学成, 程翀, 王复明, 等. 高速铁路路基沉降高聚物注浆修复后动力性能及长期耐久性的试验研究[J]. 岩土工程学报, 2014, 36(3): 562-568. doi: 10.11779/CJGE201403020

    BIAN Xuecheng, CHENG Chong, WANG Fuming, et al. Experimental study on dynamic performance and long-term durability of high-speed railway subgrade rehabilitated by polymer injection technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 562-568. (in Chinese) doi: 10.11779/CJGE201403020

    [2] 张连震, 张庆松, 刘人太, 等. 基于浆液-岩体耦合效应的微裂隙岩体注浆理论研究[J]. 岩土工程学报, 2018, 40(11): 2003-2011. doi: 10.11779/CJGE201811006

    ZHANG Lianzhen, ZHANG Qingsong, LIU Rentai, et al. Grouting mechanism in fractured rock considering slurry-rock stress coupling effects[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2003-2011. (in Chinese) doi: 10.11779/CJGE201811006

    [3]

    FUNEHAG J, THRON J. Radial penetration of cementitious grout-Laboratory verification of grout spread in a fracture model[J]. Tunnelling and Underground Space Technology, 2018, 72(feb.): 228-232.

    [4]

    SUI W, LIU J, HU W, et al. Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2015, 50: 239-249.

    [5] 李术才, 张霄, 张庆松, 等. 地下工程涌突水注浆止水浆液扩散机制和封堵方法研究[J]. 岩石力学与工程学报, 2011, 30(12): 2377-2396. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112002.htm

    LI Shucai, ZHANG Xiao, ZHANG Qingsong, et al. Research on mechanism of grout diffusion of dynamic grouting and plugging method in water inrush of underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2377-2396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112002.htm

    [6] 刘人太, 张连震, 张庆松, 等. 速凝浆液裂隙动水注浆扩散数值模拟与试验验证[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3297-3306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1020.htm

    LIU Rentai, ZHANG Lianzhen, ZHANG Qingsong, et al. Numerical simulation of crack grouting process of quick setting slurry with running water and its experimental verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3297-3306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1020.htm

    [7]

    WANG K, WANG L, REN B, et al. Understanding the Effect of cementitious grouting pressure on micro-fracture permeability for rock reinforcement underground: a lab study[J]. Energies, 2020, 13: 4225. doi: 10.3390/en13164225

    [8]

    LIANG Y, SUI W, QI J. Experimental investigation on chemical grouting of inclined fracture to control sand and water flow[J]. Tunnelling and Underground Space Technology, 2019, 83: 82-90. doi: 10.1016/j.tust.2018.09.038

    [9] 石明生, 夏威夷, 王复明, 等. 高聚物锚固体与粉土间黏结性能试验研究[J]. 岩土工程学报, 2014, 36(4): 724-730. doi: 10.11779/CJGE201404017

    SHI Mingsheng, XIA Weiyi, WANG Fuming, et al. Experimental study on bond performance between polymer anchorage body and silt[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 724-730. (in Chinese) doi: 10.11779/CJGE201404017

    [10] 李晓龙, 王复明, 钟燕辉, 等. 自膨胀高聚物注浆材料在二维裂隙中流动扩散仿真方法研究[J]. 岩石力学与工程学报, 2015, 34(6): 1188-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506013.htm

    LI Xiaolong, WANG Fuming, ZHONG Yanhui, et al. Simulation on flowing and diffusing of expansible grouting material of polymer in two-dimensional fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1188-1197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506013.htm

    [11]

    HAO M, WANG F, LI X, et al. Numerical and experimental studies of diffusion law of grouting with expansible polymer[J]. Journal of Materials in Civil Engineering, 2018, 30(2): 04017290. doi: 10.1061/(ASCE)MT.1943-5533.0002130

    [12]

    LI X, HAO M, ZHONG Y, et al. Experimental study on the diffusion characteristics of polyurethane grout in a fracture[J]. Construction and Building Materials, 2020, 273: 121711.

    [13]

    LIANG J, DU X, FANG H, et al. Numerical and experimental study of diffusion law of foamed polymer grout in fracture considering viscosity variation of slurry[J]. Tunnelling and Underground Space Technology, 2022, 128: 104674. doi: 10.1016/j.tust.2022.104674

    [14] 石明生, 夏威夷. 聚氨酯高聚物注浆固化温度试验研究[J]. 化工新型材料, 2014, 42(7): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201407044.htm

    SHI Mingsheng, XIA Weiyi. Experimental research on curing temperature of polyurethane polymer[J]. New Chemical Materials, 2014, 42(7): 133-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201407044.htm

    [15] 郝梅美. 自膨胀高聚物浆液在充水裂隙中的扩散机理研究[D]. 郑州: 郑州大学, 2019.

    HAO Mei-mei. Study on the Diffusion Law of Expansible Polymer Grout in the Water-Filled Rock Mass Fracture[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese)

图(16)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-11
  • 网络出版日期:  2023-05-23
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回