• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于分布式温度信息的土体含水率多尺度估算方法

顾凯, 张博, 姜霖, 王勇, 施斌

顾凯, 张博, 姜霖, 王勇, 施斌. 基于分布式温度信息的土体含水率多尺度估算方法[J]. 岩土工程学报, 2024, 46(12): 2661-2667. DOI: 10.11779/CJGE20221500
引用本文: 顾凯, 张博, 姜霖, 王勇, 施斌. 基于分布式温度信息的土体含水率多尺度估算方法[J]. 岩土工程学报, 2024, 46(12): 2661-2667. DOI: 10.11779/CJGE20221500
GU Kai, ZHANG Bo, JIANG Lin, WANG Yong, SHI Bin. Multi-scale estimation method for soil moisture content based on distributed temperature information[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2661-2667. DOI: 10.11779/CJGE20221500
Citation: GU Kai, ZHANG Bo, JIANG Lin, WANG Yong, SHI Bin. Multi-scale estimation method for soil moisture content based on distributed temperature information[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2661-2667. DOI: 10.11779/CJGE20221500

基于分布式温度信息的土体含水率多尺度估算方法  English Version

基金项目: 

国家自然科学基金面上项目 42277124

国家自然科学基金面上项目 41977217

江苏省基础研究计划自然科学基金面上项目 BK20231216

教育部关键地球物质循环前沿科学中心青年教师独立团队项目 0206-14380148

中央高校基本科研业务费国际合作项目 0206-14380119

详细信息
    作者简介:

    顾凯(1987—),男,教授,主要从事环境工程地质方面的研究。E-mail: gukai@nju.edu.cn

  • 中图分类号: TU43

Multi-scale estimation method for soil moisture content based on distributed temperature information

  • 摘要: 土体水分迁移过程及其规律是岩土工程、地质工程等领域的重点研究内容之一,准确掌握土体含水率时空演化是开展上述研究的重要前提。基于分布式光纤温度感测技术(fiber optic distributed temperature sensing,FO-DTS),开展了原位测试,记录了浅地表(0~0.5 m)不同深度土体自然温度信息,基于半通滤波算法提取振幅、相位信息,结合一维瞬态热传递方程解析解提出了土体含水率估算的新方法。研究结果表明:①基于FO-DTS的高时空分辨率温度信息能够有效估算浅表土体不同深度的含水率;②该方法能够反映复杂天气变化条件下(阴、晴、雨、寒潮等)浅表土体含水率的复杂响应;③降水事件对浅表土体含水率的影响程度随着深度衰减,土体含水率的变化具有一定的滞后性。利用分布式光纤温度感测技术实现基于自然温度信息的含水率估算新方法具有高空间分辨率、易拓展、低能耗的特点,可实现0~10 km内多尺度浅地表含水率快速估算,对浅地表-大气相互作用、地质和岩土工程防灾减灾具有重要意义。
    Abstract: The soil water migration is one of the key types of researches in geotechnical engineering and geological engineering, and it is an important prerequisite to accurately monitor the spatial-temporal evolution of soil moisture content. Based on the fiber optic distributed temperature sensing (FO-DTS) technology, a high spatial and temporal resolution in-situ monitoring test is conducted to illustrate the proposed method and its feasibility. The continuous natural temperature information of the soil at different depths on the shallow surface (0~0.5 m) is recorded. The amplitude and phase are extracted from the natural temperature data based on the half-pass filtering algorithm, and the soil moisture content is then estimated based on the analytical solution of the one-dimensional transient heat transfer equation. The results show that: (1) The natural temperature information obtained by the FO-DTS technology can be effectively used to estimate the moisture content of shallow soil at different depths. (2) The proposed method can accurately reflect response of the soil moisture under influences of complex weather changes (cloudy, sunny, rain, cold wave, etc.) in the shallow environment (0~0.5 m). (3) The rainfall effects on the change of shallow soil moisture decays with depth and lags in time. The new method, which owns the advantages of high-resolution monitoring, easy expansion and low energy consumption, can realize the rapid content estimation of soil moisture in multi-scale shallow subsurface environment within the range of 0~10 km. This study should be meaningful for the researches on shallow surface-atmosphere interaction, natural hazards and disaster prevention and mitigation in geotechnical engineering.
  • 图  1   基于FO-DTS的自然温度信息土体含水率的估算方法

    Figure  1.   Estimation method for soil moisture content based on FO-DTS natural temperature information

    图  2   混合土热扩散系数与含水率关系曲线

    Figure  2.   Relation curves of thermal diffusion coefficient and moisture content of mixed soil

    图  3   基于FO-DTS自然温度信息法实验示意图

    Figure  3.   Experimental diagram of FO-DTS-based natural temperature information method

    图  4   云图和变化曲线

    Figure  4.   Cloud map of temperature change at different depths over time

    图  5   不同深度土体含水率随时间变化图

    Figure  5.   Variation of soil moisture with time at different depths

    图  6   基于分布式温度信息的土体含水率多尺度估算示意图

    Figure  6.   Multi-scale estimation of soil moisture content based on distributed temperature information

  • [1] 吴宏伟. 大气-植被-土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1): 1-47. doi: 10.11779/CJGE201701001

    WU Hongwei. Atmosphere- plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. (in Chinese) doi: 10.11779/CJGE201701001

    [2]

    DOBRIYAL P, QURESHI A, BADOLA R, et al. A review of the methods available for estimating soil moisture and its implications for water resource management[J]. Journal of Hydrology, 2012, 458/459: 110-117. doi: 10.1016/j.jhydrol.2012.06.021

    [3]

    FERRARA G, FLORE J A. Comparison between different methods for measuring transpiration in potted apple trees[J]. Biologia Plantarum, 2003, 46(1): 41-47. doi: 10.1023/A:1022301931508

    [4] 徐玲玲, 高彩虹, 王佳铭, 等. 时域反射仪(TDR)测定土壤含水量标定曲线评价与方案推荐[J]. 冰川冻土, 2020, 42(1): 265-275.

    XU Lingling, GAO Caihong, WANG Jiaming, et al. Evaluation and analysis of TDR calibration curves for soil water content measurement[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 265-275. (in Chinese)

    [5] 穆青翼, 郑建国, 于永堂, 等. 基于时域反射技术(TDR)的黄土湿陷原位评价研究[J]. 岩土工程学报, 2022, 44(6): 1115-1123. doi: 10.11779/CJGE202206016

    MU Qingyi, ZHENG Jianguo, YU Yongtang, et al. In-situ evaluation of collapsible loess through time-domain reflectometry[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1115-1123. (in Chinese) doi: 10.11779/CJGE202206016

    [6]

    ANDERSON M P. Heat as a ground water tracer[J]. Ground Water, 2005, 43(6): 951-968. doi: 10.1111/j.1745-6584.2005.00052.x

    [7]

    HALLORAN L J S, RAU G C, ANDERSEN M S. Heat as a tracer to quantify processes and properties in the vadose zone: a review[J]. Earth Science Reviews, 2016, 159: 358-373. doi: 10.1016/j.earscirev.2016.06.009

    [8]

    HE H L, DYCK M F, HORTON R, et al. Development and application of the heat pulse method for soil physical measurements[J]. Reviews of Geophysics, 2018, 56(4): 567-620. doi: 10.1029/2017RG000584

    [9]

    WEISS J D. Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier[J]. Journal of the Air & Waste Management Association, 2003, 53(9): 1130-1148.

    [10]

    PERZLMAIER S, AUÑEGER M, Conrad M. Distributed fiber optic temperature measurements in hydraulic engineering: prospects of the heat–up method[C]// Proceedings of the 72nd ICOLD Annual Meeting Workshop on Dam Safety Problems and Solutions–Sharing Experience, (补地点)2004.

    [11]

    PERZLMAIER S, STRAER K, STROBL T, et al. Integral seepage monitoring on open channel embankment dams by the DFOT heat pulse method[C]//Proceedings of the 74th Annual Meeting, International Commitee on Large Dams, Barcelona, 2006.

    [12]

    SAYDE C, BUELGA J B, RODRIGUEZ-SINOBAS L, et al. Mapping variability of soil water content and flux across 1–1000 m scales using the Actively Heated Fiber Optic method[J]. Water Resources Research, 2014, 50(9): 7302-7317. doi: 10.1002/2013WR014983

    [13]

    SUN M Y, SHI B, ZHANG C C, et al. Quasi-distributed fiber-optic in situ monitoring technology for large-scale measurement of soil water content and its application[J]. Engineering Geology, 2021, 294: 106373. doi: 10.1016/j.enggeo.2021.106373

    [14]

    SUZUKI S. Percolation measurements based on heat flow through soil with special reference to paddy fields[J]. Journal of Geophysical Research, 1960, 65(9): 2883-2885. doi: 10.1029/JZ065i009p02883

    [15]

    TABBAGH A, BENDJOUDI H, BENDERITTER Y. Determination of recharge in unsaturated soils using temperature monitoring[J]. Water Resources Research, 1999, 35(8): 2439-2446. doi: 10.1029/1999WR900134

    [16]

    BÉHAEGEL M, SAILHAC P, MARQUIS G. On the use of surface and ground temperature data to recover soil water content information[J]. Journal of Applied Geophysics, 2007, 62(3): 234-243. doi: 10.1016/j.jappgeo.2006.11.005

    [17]

    MCCALLUM A M, ANDERSEN M S, RAU G C, et al. A 1-D analytical method for estimating surface water- groundwater interactions and effective thermal diffusivity using temperature time series[J]. Water Resources Research, 2012, 48(11): W11532.1-W11532.8.

    [18]

    SELKER J, VAN DE GIESEN N, WESTHOFF M, et al. Fiber optics opens window on stream dynamics[J]. Geophysical Research Letters, 2006, 33(24).

    [19]

    STEELE-DUNNE S C, RUTTEN M M, KRZEMINSKA D M, et al. Feasibility of soil moisture estimation using passive distributed temperature sensing[J]. Water Resources Research, 2010, 46(3). http://www.cabdirect.org/abstracts/20113046492.html;jsessionid=FC6C8451A8028DCF2ACED1EDF9F694AE

    [20]

    DONG J Z, STEELE-DUNNE S C, OCHSNER T E, et al. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures[J]. Water Resources Research, 2016, 52(6): 4280-4300. doi: 10.1002/2015WR018425

    [21]

    DONG J Z, STEELE-DUNNE S C, OCHSNER T E, et al. Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother[J]. Water Resources Research, 2016, 52(10): 7690-7710. doi: 10.1002/2016WR019031

    [22]

    HALLORAN L J S, ROSHAN H, RAU G C, et al. Calculating water saturation from passive temperature measurements in near-surface sediments: development of a semi-analytical model[J]. Advances in Water Resources, 2016, 89: 67-79. doi: 10.1016/j.advwatres.2016.01.007

    [23]

    CAO D F, ZHU H H, GUO C C, et al. Passive distributed temperature sensing (PDTS)-based moisture content estimation in agricultural soils under different vegetative canopies[J]. Paddy and Water Environment, 2021, 19(3): 383-393. doi: 10.1007/s10333-021-00839-6

    [24] 原黎明, 赵林, 胡国杰, 等. 青藏高原中部典型下垫面活动层水热动态及其热扩散率研究[J]. 冰川冻土, 2020, 42(2): 378-389.

    YUAN Liming, ZHAO Lin, HU Guojie, et al. Hydro-thermal dynamic and soil thermal diffusivity characteristics of typical active layer on the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 378-389. (in Chinese)

    [25]

    CAMPBELL G S. Soil Physics With Basic-Transport Models for Soil-Plant Systems[M]. Amsterdam: Elsevier, 1985.

    [26]

    ARKHANGEL'SKAYA T A. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content[J]. Eurasian Soil Science, 2009, 42(2): 162-172. doi: 10.1134/S1064229309020070

    [27]

    THOMAS H, PASCAL G, DAMIEN J, et al. Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology[J]. Hydrology and Earth System Sciences, 2023, 27(1): 255-287. doi: 10.5194/hess-27-255-2023

    [28] 赵成刚, 李舰, 宋朝阳, 等. 土力学理论需要发展与变革[J]. 岩土工程学报, 2018, 40(8): 1383-1394. doi: 10.11779/CJGE201808003

    ZHAO Chenggang, LI Jian, SONG Zhaoyang, et al. Theories of soil mechanics need reform and development[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1383-1394. (in Chinese) doi: 10.11779/CJGE201808003

图(6)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  44
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-04
  • 网络出版日期:  2024-06-12
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回