• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

基于深度学习的盾构机土舱压力场预测方法

张超, 朱闽湘, 郎志雄, 陈仁朋, 程红战

张超, 朱闽湘, 郎志雄, 陈仁朋, 程红战. 基于深度学习的盾构机土舱压力场预测方法[J]. 岩土工程学报, 2024, 46(2): 307-315. DOI: 10.11779/CJGE20221340
引用本文: 张超, 朱闽湘, 郎志雄, 陈仁朋, 程红战. 基于深度学习的盾构机土舱压力场预测方法[J]. 岩土工程学报, 2024, 46(2): 307-315. DOI: 10.11779/CJGE20221340
ZHANG Chao, ZHU Minxiang, LANG Zhixiong, CHEN Renpeng, CHENG Hongzhan. Deep learning-based prediction method for chamber pressure field in shield machines[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 307-315. DOI: 10.11779/CJGE20221340
Citation: ZHANG Chao, ZHU Minxiang, LANG Zhixiong, CHEN Renpeng, CHENG Hongzhan. Deep learning-based prediction method for chamber pressure field in shield machines[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 307-315. DOI: 10.11779/CJGE20221340

基于深度学习的盾构机土舱压力场预测方法  English Version

基金项目: 

国家重点研发计划项目 2019YFB1705201

国家自然科学基金项目 2090082

国家自然科学基金项目 51938005

中建股份科技研发课题 CSCEC-2022-Z-16

详细信息
    作者简介:

    张超(1990—),男,博士,教授,主要从事非饱和土与特殊土力学、地下空间开发及利用技术方面的研究。E-mail: chao_zhang@hnu.edu.cn

    通讯作者:

    陈仁朋(E-mail: chenrp@hnu.edu.cn

  • 中图分类号: TU43;U455.43

Deep learning-based prediction method for chamber pressure field in shield machines

  • 摘要: 土舱压力是盾构机受力状态和掌子面稳定等核心问题中的关键因素。土舱压力具有显著的空间变异性,其形成演化机制源于装备与岩土之间的复杂耦合作用,与地质特征、掘进参数等多源参数相关。然而,现有土舱压力预测方法一般未考虑空间分布特征或地质参数影响。针对该问题,提出了一种基于空间分布物理特征函数导引深度学习的盾构机土舱压力场预测方法。该方法构建物理特征函数用于解耦土舱压力空间分布特征,采用卷积神经网络和门控循环单元分别提取多源参数历史信息的空间特征和特征系数的时序特征,结合多源参数实时信息对特征系数进行预测,从而实现土舱压力场的预测。以长沙地铁四号线某区段为案例,利用该方法准确预测了土舱压力空间分布实测数据,准确率高达0.98,验证了所提方法的有效性。敏感性分析表明,不同地层中土舱压力空间分布特征系数的主要敏感参数基本一致,但其敏感度随地层地质条件的变化规律差异显著,可为复杂地层盾构机土舱压力精细化调控提供参考。
    Abstract: The chamber pressure is a key factor in the core issues of the stress state of equipment and the stability of tunnel face during shield tunneling. It exhibits significant spatial variability, and its formation and evolution originate from the complex coupling effects of geotechnics and mechanism, which is related to multiple parameters such as geological features and tunnelling parameters. Yet, the spatial distribution features or geological features are generally ignored in the existing methods for predicting the chamber pressure. To probe this problem, a method to predict the chamber pressure field in shield machines is proposed based on the deep learning algorithm guided by the physical feature function of spatial distribution. This method constructs the physical feature function for decoupling the spatial distribution features of the chamber pressure, uses the convolutional neural network and gated recurrent unit to extract the spatial features of the historical information of multi-source parameters and the temporal features of feature coefficient, respectively, and combines the real-time information of multi-source parameters to predict the feature coefficient, so as to realize the prediction of the chamber pressure field. Taking a section of Changsha Metro Line 4 as a case study, this method is used to accurately predict the measured spatial distribution of the chamber pressure with an accuracy of 0.98, which verifies the effectiveness of the proposed method. The sensitivity analysis reveals that the main sensitive parameters of the spatial distribution feature coefficient of the chamber pressure are basically the same in different strata, but their sensitivities vary significantly with the geological conditions of strata. The results may provide guidance for the refined control of the chamber pressure of shield machines in complex strata.
  • 图  1   物理特征函数三维示意图

    Figure  1.   Three-dimensional schematic diagram of physical feature function

    图  2   特征函数导引的混合算法结构

    Figure  2.   Structure of hybrid algorithm guided by feature function

    图  3   工程案例区间平面图

    Figure  3.   Plan view of project case

    图  4   盾构掘进主要施工参数

    Figure  4.   Main operating parameters of shield tunneling

    图  5   关键施工参数时序实测数据

    Figure  5.   Measured time-series data for key construction parameters

    图  6   物理特征函数拟合精度

    Figure  6.   Predicted accuracies of physical feature function

    图  7   空间分布特征系数自相关分析

    Figure  7.   Autocorrelation analysis of spatial distribution feature coefficient

    图  8   预测与实测土舱压力对比图

    Figure  8.   Comparison between predicted and measured chamber pressures

    表  1   输入参数统计特征表

    Table  1   Statistical characteristics of input parameters

    参数类别 特征名称 平均值 最小值 最大值 标准差 单位
    施工参数 土舱压力1 0.77 0.41 1.44 0.20 bar
    土舱压力2 0.83 0.47 1.47 0.18 bar
    土舱压力3 1.02 0.55 1.56 0.18 bar
    土舱压力4 0.65 0.33 1.11 0.14 bar
    土舱压力5 1.74 1.17 2.47 0.27 bar
    土舱压力6 1.50 1.03 1.96 0.19 bar
    均值项(a) 1.11 0.72 1.56 0.18 bar
    上下梯度项(b) -0.56 -0.90 -0.26 0.09 bar
    左右梯度项(c) 0.17 0.07 0.30 0.04 bar
    局部异质项(d) 0.24 0.12 0.45 0.07 bar
    装备侧滚 35.09 -65.77 103.16 30.23 mm
    装备倾角 -0.08 -1.15 2.02 0.88 °
    刀盘转速 1.17 0.43 1.45 0.12 r/min
    A组油缸推进压力 82.20 33.08 149.59 15.61 MPa
    B组油缸推进压力 95.03 45.38 158.28 17.95 MPa
    C组油缸推进压力 115.01 56.61 167.86 17.91 MPa
    D组油缸推进压力 96.62 48.43 165.72 18.64 MPa
    推进速度 31.27 8.99 65.03 8.12 mm/min
    贯入度 25.06 7.12 52.92 6.73 mm/r
    总推进力 8.33 2.92 12.89 1.84 MN
    螺旋机转速 5.20 -0.03 13.88 1.97 r/min
    螺旋机上卸料门开度 373.44 112.20 638.49 91.57 mm
    螺旋机下卸料门开度 655.86 286.55 738.57 48.93 mm
    膨润土流量1 70.11 20.03 161.32 28.52 mm3
    膨润土流量2 49.84 11.57 142.68 24.47 mm3
    砂浆注入口压力 7.50 2.64 16.33 2.78 MPa
    泡沫进水管压力 3.11 0.90 8.93 1.16 MPa
    泡沫枪液体流量1 6.13 0.71 15.57 3.46 mm3
    泡沫枪液体流量2 7.14 1.81 14.93 2.70 mm3
    泡沫枪空气流量1 129.45 18.39 554.74 76.95 mm3
    泡沫枪空气流量2 227.44 -0.67 1133.98 114.54 mm3
    泡沫枪压力1 1.34 0.30 5.17 0.58 MPa
    泡沫枪压力2 1.11 0.54 1.56 0.17 MPa
    泡沫枪压力3 1.54 0.66 2.45 0.42 MPa
    泡沫枪压力4 1.75 0.82 2.41 0.29 MPa
    泡沫枪压力5 0.92 0.48 2.16 0.36 MPa
    地质参数 隧道埋深 21.71 11.25 31.65 5.72 m
    地下水位 11.44 0.00 25.45 7.83 m
    修正标准贯入次数 2.10 0.00 9.92 1.96
    修正动力触探次数 0.30 0.00 1.99 0.45
    修正单轴抗压强度 14.22 0.05 39.37 11.59 kPa
    静止土压力 275.62 129.53 409.90 73.56 kPa
    下载: 导出CSV

    表  2   不同模型预测误差及精度对比

    Table  2   Comparison of predicted errors and accuracies between different models

    预测模型 特征系数 MSE RMSE MAE R2
    CNN a 0.0009 0.0298 0.0221 0.9796
    b 0.0011 0.0325 0.0247 0.9419
    c 0.0014 0.0372 0.0282 0.9368
    d 0.0009 0.0306 0.0231 0.9800
    平均值 0.0011 0.0325 0.0245 0.9596
    GRU a 0.0009 0.0303 0.0214 0.9791
    b 0.0017 0.0407 0.0316 0.9058
    c 0.0004 0.0194 0.0124 0.9832
    d 0.0004 0.0205 0.0146 0.9910
    平均值 0.0008 0.0277 0.0200 0.9648
    CNN-GRU a 0.0005 0.0215 0.0148 0.9895
    b 0.0004 0.0189 0.0124 0.9812
    c 0.0002 0.0158 0.0097 0.9891
    d 0.0003 0.0165 0.0113 0.9943
    平均值 0.0003 0.0181 0.0121 0.9885
    下载: 导出CSV

    表  3   特征函数导引方法与数据驱动方法预测结果对比

    Table  3   Comparison of predicted results between feature function-guided method and data-driven method

    预测方法 评价指标 土舱压力1 土舱压力2 土舱压力3 土舱压力4 土舱压力5 土舱压力6 平均值
    特征函数导引预测土舱压力 R2 0.99886 0.95357 0.94713 0.98468 0.99064 0.98476 0.97665
    MSE 0.00005 0.00142 0.00162 0.00026 0.00067 0.00055 0.00076
    RMSE 0.00674 0.03763 0.04029 0.01603 0.02596 0.02348 0.02502
    MAE 0.00582 0.03249 0.03568 0.01288 0.02113 0.01841 0.02107
    数据驱动直接预测土舱压力 R2 0.97509 0.98680 0.98347 0.96658 0.97444 0.97267 0.97651
    MSE 0.00086 0.00046 0.00062 0.00148 0.00073 0.00082 0.00083
    RMSE 0.02941 0.02149 0.02498 0.03853 0.02693 0.02867 0.02833
    MAE 0.02251 0.01614 0.01829 0.02783 0.02107 0.02249 0.02139
    下载: 导出CSV
  • [1] 中国城市轨道交通协会. 城市轨道交通2021年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2022.

    China Association of Metros. Urban Rail Transit Statistics and Analytical Report in 2021[R]. Beijing: China Association of Metros, 2022. (in Chinese)

    [2] 郑刚, 崔涛, 程雪松, 等. 某地铁区间盾构法施工隧道事故实例与分析[J]. 岩土工程学报, 2017, 39(增刊2): 132-135. doi: 10.11779/CJGE2017S2033

    ZHENG Gang, CUI Tao, CHENG Xuesong, et al. Introduction and analysis of an accident in a shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 132-135. (in Chinese) doi: 10.11779/CJGE2017S2033

    [3] 陈辉华, 李瑚均, 户晓栋. 地铁盾构掘进安全影响因素及事故致因模型[J]. 铁道工程学报, 2020, 37(5): 87-92. doi: 10.3969/j.issn.1006-2106.2020.05.016

    CHEN Huihua, LI Hujun, HU Xiaodong. Safety influential factors and accident causation model of subway shield construction[J]. Journal of Railway Engineering Society, 2020, 37(5): 87-92. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.05.016

    [4] 侯永茂, 杨国祥, 葛修润, 等. 土压平衡盾构土舱压力建立机制及设定准则研究[J]. 岩石力学与工程学报, 2012, 31(3): 625-631. doi: 10.3969/j.issn.1000-6915.2012.03.022

    HOU Yongmao, YANG Guoxiang, GE Xiurun, et al. Study of established mechanism and setting standard of chamber earth pressure for earth pressure balance shield[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 625-631. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.03.022

    [5]

    HU X Y, HE C A, WALTON G, et al. Face stability analysis of EPB shield tunnels in dry granular soils considering nonuniform chamber pressure and a dynamic excavation process[J]. International Journal of Geomechanics, 2021, 21(6): 04021074. doi: 10.1061/(ASCE)GM.1943-5622.0002032

    [6] 朱合华, 徐前卫, 廖少明, 等. 土压平衡盾构法施工参数的模型试验研究[J]. 岩土工程学报, 2006, 28(5): 553-557. doi: 10.3321/j.issn:1000-4548.2006.05.002

    ZHU Hehua, XU Qianwei, LIAO Shaoming, et al. Experimental study on working parameters of EPB shield machine[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 553-557. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.05.002

    [7] 王洪新, 傅德明. 土压平衡盾构掘进的数学物理模型及各参数间关系研究[J]. 土木工程学报, 2006, 39(9): 86-90. doi: 10.3321/j.issn:1000-131X.2006.09.014

    WANG Hongxin, FU Deming. A mathematical model and the related parameters for EPB shield tunneling[J]. China Civil Engineering Journal, 2006, 39(9): 86-90. (in Chinese) doi: 10.3321/j.issn:1000-131X.2006.09.014

    [8]

    ACUN S N, BILGIN N, ERBOYLU U. Contribution on the understanding of EPB-TBM drives in complex geologic structures[J]. Tunnelling and Underground Space Technology, 2021, 107: 103646. doi: 10.1016/j.tust.2020.103646

    [9] 侯永茂, 杨国祥, 葛修润, 等. 超大直径土压平衡盾构土舱压力和开挖面水土压力分布特性研究[J]. 岩土力学, 2012, 33(9): 2713-2718.

    HOU Yongmao, YANG Guoxiang, GE Xiurun, et al. Study of distribution properties of water and earth pressure at excavation face and in chamber of earth pressure balance shield with super-large diameter[J]. Rock and Soil Mechanics, 2012, 33(9): 2713-2718. (in Chinese)

    [10]

    WANG S Y, QU T M, FANG Y, et al. Stress responses associated with earth pressure balance shield tunneling in dry granular ground using the discrete-element method[J]. International Journal of Geomechanics, 2019, 19(7): 04019060. doi: 10.1061/(ASCE)GM.1943-5622.0001434

    [11] 邵诚俊, 李修亮, 苏宏业. 基于多系统协调的密封舱压力智能化控制[J]. 机械工程学报, 2014, 50(21)105-110.

    SHAO Chengjun, LI Xiuliang, SU Hongye. Intelligent control for earth pressure in chamber of earth pressure balance shield machine based on multi-system coordination[J]. Journal of Mechanical Engineering, 2014, 50(21): 105-110. (in Chinese)

    [12]

    DANG T S, MESCHKE G. Influence of muck properties and chamber design on pressure distribution in EPB pressure chambers: insights from computational flow simulations[J]. Tunnelling and Underground Space Technology, 2020, 99: 103333. doi: 10.1016/j.tust.2020.103333

    [13]

    YE X Y, WANG S Y, YANG J S, et al. Soil conditioning for EPB shield tunneling in argillaceous siltstone with high content of clay minerals: case study[J]. International Journal of Geomechanics, 2017, 17(4): 0516002.

    [14] 王树英, 刘朋飞, 胡钦鑫, 等. 盾构隧道渣土改良理论与技术研究综述[J]. 中国公路学报, 2020, 33(5): 8-34. doi: 10.3969/j.issn.1001-7372.2020.05.002

    WANG Shuying, LIU Pengfei, HU Qinxin, et al. State-of-the-art on theories and technologies of soil conditioning for shield tunneling[J]. China Journal of Highway and Transport, 2020, 33(5): 8-34. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.05.002

    [15]

    CHENG Z L, ZHOU W H, GARG A. Genetic programming model for estimating soil suction in shallow soil layers in the vicinity of a tree[J]. Engineering Geology, 2020, 268: 105506. doi: 10.1016/j.enggeo.2020.105506

    [16]

    ZHANG P, YIN Z Y, JIN Y F, et al. A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[J]. Engineering Geology, 2020, 265: 105328. doi: 10.1016/j.enggeo.2019.105328

    [17] 罗维平, 袁大军, 金大龙, 等. 基于随机森林的复合地层盾构切口泥水压力预测与分析[J]. 土木工程学报, 2020, 53(增刊1): 43-49.

    LUO Weiping, YUAN Dajun, JIN Daling, et al. Prediction and analysis of slurry pressure at the shield cut in composite strata based on random forest[J]. China Civil Engineering Journal, 2020, 53(S1): 43-49. (in Chinese)

    [18] 黄靓钰, 阳军生, 张聪, 等. 基于BP神经网络的水下岩溶地层盾构掘进参数预测与分析[J]. 土木工程学报, 2020, 53(增刊1): 75-80+98.

    HUANG Liangyu, YANG Junsheng, ZHANG Cong, et al. Prediction and analysis of shield tunneling parameters in underwater karst stratum based on BP neural network[J]. China Civil Engineering Journal, 2020, 53(S1): 75-80+98. (in Chinese)

    [19] 李洛宾, 龚晓南, 甘晓露, 等. 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报, 2020, 53(增刊1): 13-19.

    LI Luobin, GONG Xiaonan, GAN Xiaolu, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 53(S1): 13-19. (in Chinese)

    [20]

    YEH I C. Application of neural networks to automatic soil pressure balance control for shield tunneling[J]. Automation in Construction, 1997, 5(5): 421-426. doi: 10.1016/S0926-5805(96)00165-3

    [21]

    LIU X Y, SHAO C, MA H F, et al. Optimal earth pressure balance control for shield tunneling based on LS-SVM and PSO[J]. Automation in Construction, 2011, 20(4): 321-327. doi: 10.1016/j.autcon.2010.11.002

    [22]

    SHAO C, LAN D S. Optimal control of an earth pressure balance shield with tunnel face stability[J]. Automation in Construction, 2014, 46: 22-29. doi: 10.1016/j.autcon.2014.07.005

    [23] 刘宣宇, 张凯举, 邵诚. 基于数据驱动的盾构机密封舱土压预测[J]. 煤炭学报, 2019, 44(9): 2898-2904.

    LIU Xuanyu, ZHANG Kaiju, SHAO Cheng. Earth pressure prediction in soil chamber of shield machine based on data-driven[J]. Journal of China Coal Society, 2019, 44(9): 2898-2904. (in Chinese)

    [24]

    GAO M Y, ZHANG N, SHEN S L, et al. Real-time dynamic earth-pressure regulation model for shield tunneling by integrating GRU deep learning method with GA optimization[J]. IEEE Access, 2020, 8: 64310-64323. doi: 10.1109/ACCESS.2020.2984515

    [25]

    MOSAVAT K. Examination of excavation chamber pressure on a 17.5 m diameter earth pressure balance tunnel boring machine[D]. Colorado School of Mines, 2015

    [26]

    BEZUIJEN A, TALMON A. Soil pressures at the cutting wheel and the pressure bulkhead of an EPB-shield[M]// Geotechnical Aspects of Underground Construction in Soft Ground. London: CRC Press, 2014: 523-529.

    [27] 赫晓慧, 罗浩田, 乔梦佳, 等. 基于CNN-RNN网络的中国冬小麦估产[J]. 农业工程学报, 2021, 37(17): 124-132. doi: 10.11975/j.issn.1002-6819.2021.17.014

    HE Xiaohui, LUO Haotian, QIAO Mengjia, et al. Yield estimation of winter wheat in China based on CNN-RNN network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 124-132. (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.17.014

    [28]

    YU J X, ZHANG X, XU L L, et al. A hybrid CNN-GRU model for predicting soil moisture in maize root zone[J]. Agricultural Water Management, 2021, 245: 106649. doi: 10.1016/j.agwat.2020.106649

    [29] 姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44(9): 3416-3423.

    YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44(9): 3416-3423. (in Chinese)

    [30]

    XIAO M, YANG B, WANG S L, et al. A feature fusion enhanced multiscale CNN with attention mechanism for spot-welding surface appearance recognition[J]. Computers in Industry, 2022, 135: 103583. doi: 10.1016/j.compind.2021.103583

    [31]

    YANG S L, CHONG X. Study on feature extraction technology of real-time video acquisition based on deep CNN[J]. Multimedia Tools and Applications, 2021, 80(25): 33937-33950. doi: 10.1007/s11042-021-11417-7

    [32]

    LIU Y, PU H B, SUN D W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices[J]. Trends in Food Science & Technology, 2021, 113: 193-204.

    [33]

    CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder–decoder approaches[C]// Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Doha: Association for Computational Linguistics, 2014: 103-111.

    [34]

    CHEN R P, ZHANG P, KANG X, et al. Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods[J]. Soils and Foundations, 2019, 59(2): 284-295. doi: 10.1016/j.sandf.2018.11.005

    [35]

    SOBOL I M. Sensitivity analysis for non-linear mathematical models[J]. Mathematical Modelling and Computational Experiment, 1993(1): 407-414.

图(8)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 网络出版日期:  2023-06-05
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回