不同冲击气压下煤样动态剪切强度的长径比效应

    王磊, 陈礼鹏, 袁秋鹏, 焦振华, 刘怀谦

    王磊, 陈礼鹏, 袁秋鹏, 焦振华, 刘怀谦. 不同冲击气压下煤样动态剪切强度的长径比效应[J]. 岩土工程学报, 2024, 46(1): 131-139. DOI: 10.11779/CJGE20221286
    引用本文: 王磊, 陈礼鹏, 袁秋鹏, 焦振华, 刘怀谦. 不同冲击气压下煤样动态剪切强度的长径比效应[J]. 岩土工程学报, 2024, 46(1): 131-139. DOI: 10.11779/CJGE20221286
    WANG Lei, CHEN Lipeng, YUAN Qiupeng, JIAO Zhenhua, LIU Huaiqian. Length-diameter ratio effects of dynamic shear strength of coal samples under different impact air pressures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 131-139. DOI: 10.11779/CJGE20221286
    Citation: WANG Lei, CHEN Lipeng, YUAN Qiupeng, JIAO Zhenhua, LIU Huaiqian. Length-diameter ratio effects of dynamic shear strength of coal samples under different impact air pressures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 131-139. DOI: 10.11779/CJGE20221286

    不同冲击气压下煤样动态剪切强度的长径比效应  English Version

    基金项目: 

    安徽省科技重大专项项目 202203a07020010

    安徽省教育厅协同创新项目 GXXT-2020-055

    国家自然科学基金青年基金项目 52204083

    详细信息
      作者简介:

      王磊(1980—),男,教授,博士生导师,主要从事矿山压力与岩层控制方面的研究工作。E-mail:leiwang723@126.com

      通讯作者:

      陈礼鹏, E-mail:honesty0511@126.com

    • 中图分类号: TU435

    Length-diameter ratio effects of dynamic shear strength of coal samples under different impact air pressures

    • 摘要: 采用Φ50 mm分离式霍普金森压杆(SHPB)试验系统,开展了不同冲击气压下直径75 mm,长径比分别为0.20,0.27,0.33,0.40和0.47的5组煤样的动态剪切试验,划分了煤动态剪应力时程曲线的阶段,探讨了冲击气压对煤样动态剪切强度的影响,分析了煤样动态剪切强度和加载率的长径比效应,并建立了长径比效应理论模型。研究结果表明:①煤样动态剪应力时程曲线可分为应力初始上升、应力线性增长、应力缓慢上升和应力下降4个阶段;②煤样动态剪切强度与冲击气压呈正线性相关,但不同长径比下增加幅度存在差异,具体表现为:相同冲击气压增量下,煤样长径比越小,动态剪切强度的增加幅度越大;③煤样动态剪切强度和加载率均与长径比有关,在0.25,0.35 MPa较低冲击气压与0.45,0.55 MPa较高冲击气压下分别呈现出正、负长径比效应,并通过方差分析确定了长径比对其影响最小的冲击气压为0.376 MPa;④建立了不同冲击气压下煤样动态剪切强度长径比效应理论模型,通过加载率效应推导出加载率长径比效应理论模型,并验证了模型的合理性和准确性。
      Abstract: Five sets of coal samples with a diameter of 75 mm and length-diameter ratios of 0.20, 0.27, 0.33, 0.40 and 0.47 are subjected to dynamic shear tests under varying impact air pressures with a Φ50 mm-split Hopkinson press bar (SHPB) experimental system. The impact air pressures on the dynamic shear strength of coal samples and the length-diameter ratio effects on the dynamic shear strength and loading rate of coal samples are investigated, and a theoretical model is established for the length-diameter ratio effects. The experimental results demonstrate that: (1) The dynamic shear stress time curve of the coal samples can be divided into four stages: initial rise, linear increase, slow rise and fall in stress. (2) The dynamic shear strength and loading rate of coal samples are positively and linearly correlated with the impact air pressures, but there are differences in the magnitude of increase for different length-diameter ratios. As shown by the fact that the smaller the length-diameter ratio of the coal samples, the greater the increase in dynamic shear strength and loading rate at the same impact air pressure increment. (3) The dynamic shear strength and loading rate of the coal samples are both related to the length-diameter ratio, and exhibit positive and negative length-diameter ratio effects at lower ones of 0.25 and 0.35 MPa and higher ones of 0.45 and 0.55 MPa, respectively, and the impact pressures with the least effects of the length-diameter ratio are determined by ANOVA to be 0.376 MPa. (4) A theoretical model for the effects of dynamic shear strength length-diameter ratio on the coal samples under different impact air pressuress is established, and a theoretical model for the effects of loading rate length-diameter ratio is derived from the loading rate effects, and the reasonableness and accuracy of the proposed model are verified.
    • 图  1   SHPB试验系统

      Figure  1.   SHPB test system

      图  2   试验煤样

      Figure  2.   Test coal samples

      图  3   试样加载示意图

      Figure  3.   Schematic diagram of sample loading

      图  4   不同长径比试样两端力平衡

      Figure  4.   Force balance at both ends of samples with different l/d

      图  5   不同长径比煤样动态剪应力时程曲线

      Figure  5.   Time-history course of dynamic shear stress curves of coal samples with different l/d

      图  6   不同长径比典型煤样破坏形态

      Figure  6.   Failure modes of samples under different l/d

      图  7   动态剪切强度与冲击气压关系

      Figure  7.   Relationship between dynamic shear strength and impact pressure

      图  8   动态剪切强度与长径比关系

      Figure  8.   Relationship between dynamic shear strength and l/d

      图  9   不同参数a下煤样动态剪切强度随长径比变化曲线

      Figure  9.   Curves of dynamic shear strength of coal samples with l/d under different values of parameter a

      图  10   动态剪切强度与加载率关系

      Figure  10.   Relationship between dynamic shear strength and loading rate

      图  11   加载率与长径比的关系

      Figure  11.   Relationship between loading rate and aspect ratio

      图  12   煤CT扫描切片

      Figure  12.   CT scan slices of coal

      表  1   不同冲击气压下l/d=0.30煤样加载率

      Table  1   Loading rates of coal samples at l/d=0.30 under different impact air pressures

      p/MPa τ˙/(GPa·s-1) 加载率/(GPa·s-1)
      平均值 理论值
      0.25 91.81 90.90 89.09
      95.14
      85.75
      0.35 138.91 137.68 139.58
      143.50
      130.64
      0.45 232.41 229.61 231.52
      225.60
      230.82
      0.55 335.75 322.44 318.52
      321.34
      310.23
      下载: 导出CSV

      表  2   煤样CT扫描结果

      Table  2   CT scan results of coal samples

      l/d 0.4 0.6 0.8
      内部三维裂隙
      裂隙体积/mm3 21.70 26.20 50.00
      下载: 导出CSV
    • [1] 余永强, 张文龙, 范利丹, 等. 冲击荷载下煤系砂岩应变率效应及能量耗散特征[J]. 煤炭学报, 2021, 46(7): 2281-2293.

      YU Yongqiang, ZHANG Wenlong, FAN Lidan, et al. Strain rate effect and energy dissipation characteristics of sandstone in coal measures under impact loading[J]. Journal of China Coal Society, 2021, 46(7): 2281-2293. (in Chinese)

      [2] 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846-866.

      LI Xibing, GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society, 2021, 46(3): 846-866. (in Chinese)

      [3] 张慧梅, 陈世官, 王磊, 等. 扰动冲击下弱胶结红砂岩的能量耗散与分形特征[J]. 岩土工程学报, 2022, 44(4): 622-631. doi: 10.11779/CJGE202204004

      ZHANG Huimei, CHEN Shiguan, WANG Lei, et al. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622-631. (in Chinese) doi: 10.11779/CJGE202204004

      [4] 刘磊, 李睿, 秦浩, 等. 高温后深部矽卡岩动力学特性及微观破坏机制研究[J]. 岩土工程学报, 2022, 44(6): 1166-1174. doi: 10.11779/CJGE202206022

      LIU Lei, LI Rui, QIN Hao, et al. Dynamic mechanical properties and microscopic damage characteristics of deep skarn after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1166-1174. (in Chinese) doi: 10.11779/CJGE202206022

      [5]

      WANG F L, XIA K W, YAO W, et al. Slip behavior of rough rock discontinuity under high velocity impact: experiments and models[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104831. doi: 10.1016/j.ijrmms.2021.104831

      [6]

      YAN Z L, DAI F, LIU Y, et al. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5535-5552. doi: 10.1007/s10064-020-01914-8

      [7]

      ZHOU J, MENG X R, LIU C Y, et al. Study on the rock size effect of quasistatic and dynamic compression characteristics[J]. Advances in Materials Science and Engineering, 2021, 2021: 1-9.

      [8] 杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析[J]. 煤炭学报, 2020, 45(9): 3107-3118.

      YANG Renshu, LI Weiyu, LI Yongliang, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks[J]. Journal of China Coal Society, 2020, 45(9): 3107-3118. (in Chinese)

      [9] 赵毅鑫, 肖汉, 黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究[J]. 煤炭学报, 2014, 39(2): 286-291.

      ZHAO Yixin, XIAO Han, HUANG Yaqiong. Dynamic split tensile test of Brazilian disc of coal with split Hopkinson pressure bar loading[J]. Journal of China Coal Society, 2014, 39(2): 286-291. (in Chinese)

      [10] 夏开文, 姚伟. 预加载下岩石的动态力学性能研究[J]. 工程爆破, 2015, 21(6): 7-13. doi: 10.3969/j.issn.1006-7051.2015.06.002

      XIA Kaiwen, YAO Wei. Dynamic mechanical properties of rock under pre-load[J]. Engineering Blasting, 2015, 21(6): 7-13. (in Chinese) doi: 10.3969/j.issn.1006-7051.2015.06.002

      [11]

      HUANG S, FENG X T, XIA K. A dynamic punch method to quantify the dynamic shear strength of brittle solids[J]. Review of Scientific Instruments, 2011, 82(5): 53901. doi: 10.1063/1.3585983

      [12]

      XU Y, DAI F. Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 747-764. doi: 10.1007/s00603-017-1364-2

      [13]

      XU Y, YAO W, XIA K W, et al. Experimental study of the dynamic shear response of rocks using a modified punch shear method[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2523-2534. doi: 10.1007/s00603-019-1744-x

      [14] 平琦, 张号, 苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 3891-3897.

      PING Qi, ZHANG Hao, SU Haipeng. Study on dynamic compression mechanical properties of limestone with different lengths[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3891-3897. (in Chinese)

      [15] 刘宝琛, 张家生, 杜奇中, 等. 岩石抗压强度的尺寸效应[J]. 岩石力学与工程学报, 1998, 17(6): 611-614.

      LIU Baochen, ZHANG Jiasheng, DU Qizhong, et al. A study of size effect for compression strength of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614. (in Chinese)

      [16] 尤明庆, 邹友峰. 关于岩石非均质性与强度尺寸效应的讨论[J]. 岩石力学与工程学报, 2000, 19(3): 391-395.

      YOU Mingqing, ZOU Youfeng. Discussion on rock heterogeneity and strength size effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 391-395. (in Chinese)

      [17] 吕兆兴, 冯增朝, 赵阳升. 岩石的非均质性对其材料强度尺寸效应的影响[J]. 煤炭学报, 2007, 32(9): 917-920.

      LÜ Zhaoxing, FENG Zengchao, ZHAO Yangsheng. Influence of rock inhomogeneity on strength-size effect of rock materials[J]. Journal of China Coal Society, 2007, 32(9): 917-920. (in Chinese)

      [18] 杨圣奇, 苏承东, 徐卫亚. 岩石材料尺寸效应的试验和理论研究[J]. 工程力学, 2005, 22(4): 112-118. doi: 10.3969/j.issn.1000-4750.2005.04.022

      YANG Shengqi, SU Chengdong, XU Weiya. Experimental and theoretical study of size effect of rock material[J]. Engineering Mechanics, 2005, 22(4): 112-118. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.04.022

      [19] 洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究[J]. 岩石力学与工程学报, 2008, 27(3): 526-533.

      HONG Liang, LI Xibing, MA Chunde, et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526-533. (in Chinese)

      [20] 赵光明, 周俊, 孟祥瑞, 等. 高径比差异条件下花岗岩岩石动态冲击压缩特性[J]. 岩石力学与工程学报, 2021, 40(7): 1392-1401.

      ZHAO Guangming, ZHOU Jun, MENG Xiangrui, et al. Dynamic impact compression characteristics of granite rocks with different length-diameter ratios[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1392-1401. (in Chinese)

      [21] 煤和岩石物理力学性质测定方法 第1部分: 采样一般规定: GB/T 23561.1—2009[S]. 北京: 中国标准出版社, 2009.

      Methods for Determining the Physical and Mechanical Properties of Coal and Rock-Part 1: General Requirements for Sampling: GB/T 23561.1—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)

      [22] 岩石材料冲剪试样动态剪切强度测试方法: T/CSEB 0003—2018[S]. 2018.

      Testing Method for Determining Dynamic Shear Strength of Rock Materials by Punch Shear Specimen: T/CSEB0003—2018[S]. 2018. (in Chinese)

      [23]

      ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-Ⅰ fracture toughness of rock materials[M]//The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. Cham: Springer International Publishing, 2011: 35-44.

      [24]

      YAO W, HE T M, XIA K W. Dynamic mechanical behaviors of Fangshan marble[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 807-817. doi: 10.1016/j.jrmge.2017.03.019

      [25] 吴拥政, 孙卓越, 付玉凯. 三维动静加载下不同长径比煤样力学特性及能量耗散规律[J]. 岩石力学与工程学报, 2022, 41(5): 877-888.

      WU Yongzheng, SUN Zhuoyue, FU Yukai. Mechanical properties and energy dissipation laws of coal samples with different length-to-diameter ratios under 3D coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 877-888. (in Chinese)

      [26]

      SULUKCU S, ULUSAY R. Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(8): 1091-1111. doi: 10.1016/S1365-1609(01)00079-X

      [27]

      YAO W, XU Y, YU C Y, et al. A dynamic punch-through shear method for determining dynamic Mode Ⅱ fracture toughness of rocks[J]. Engineering Fracture Mechanics, 2017, 176: 161-177. doi: 10.1016/j.engfracmech.2017.03.012

      [28] 牛雷雷, 朱万成, 李少华, 等. 砂岩黏性对抗拉强度加载率效应影响的试验研究[J]. 岩石力学与工程学报, 2017, 36(10): 2466-2473.

      NIU Leilei, ZHU Wancheng, LI Shaohua, et al. Experimental investigation to effect of viscosity and loading rate on tensile strength of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2466-2473. (in Chinese)

      [29]

      ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411-1478. doi: 10.1007/s00603-013-0463-y

    • 期刊类型引用(1)

      1. 许江波,余洋林,孙国政,孙浩珲,赖杰,王磊. 静动态压缩下千枚岩长径比效应影响研究. 重庆大学学报. 2024(06): 43-57 . 百度学术

      其他类型引用(0)

    图(12)  /  表(2)
    计量
    • 文章访问数:  261
    • HTML全文浏览量:  40
    • PDF下载量:  58
    • 被引次数: 1
    出版历程
    • 收稿日期:  2022-10-17
    • 网络出版日期:  2024-01-08
    • 刊出日期:  2023-12-31

    目录

      /

      返回文章
      返回