• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含挖填界面边坡三维稳定性上限分析

闫超, 王红雨

闫超, 王红雨. 含挖填界面边坡三维稳定性上限分析[J]. 岩土工程学报, 2024, 46(1): 174-181. DOI: 10.11779/CJGE20221264
引用本文: 闫超, 王红雨. 含挖填界面边坡三维稳定性上限分析[J]. 岩土工程学报, 2024, 46(1): 174-181. DOI: 10.11779/CJGE20221264
YAN Chao, WANG Hongyu. Three-dimensional stability of slopes with cut-fill interface based on upper-bound limit analysis[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 174-181. DOI: 10.11779/CJGE20221264
Citation: YAN Chao, WANG Hongyu. Three-dimensional stability of slopes with cut-fill interface based on upper-bound limit analysis[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 174-181. DOI: 10.11779/CJGE20221264

含挖填界面边坡三维稳定性上限分析  English Version

基金项目: 

国家自然科学基金项目 41962016

妙岭750 kV变电站科技进步项目 SGNXSB00BDJS2100567

宁夏回族自治区一流学科建设项目 NXYLXK2021A03

详细信息
    作者简介:

    闫超(1995—),男,硕士研究生,主要从事边坡稳定性和极限分析方法方面的研究工作。E-mail: 1847610334@qq.com

    通讯作者:

    王红雨, E-mail: why.nxts@nxu.edu.cn

  • 中图分类号: TU43

Three-dimensional stability of slopes with cut-fill interface based on upper-bound limit analysis

  • 摘要: 针对工程实践中挖填交界面与边坡坡面走向线斜交的高边坡空间三维稳定分析问题,基于极限分析上限定理,构建拓展的三维牛角状破坏机构,通过引入机构参数挖填界面倾角α突出边坡特性,建立与之对应的功能平衡方程,采用序列二次规划优化算法求解强度折减后的边坡安全系数上限解。在此基础上,计算了宁夏黄土丘陵地区妙岭750 kV变电站高边坡以及相关文献中极限状态下边坡稳定性系数γH/c工程案例,并将计算结果与有限元极限分析软件模拟值进行对比分析。结果表明:随着挖填界面倾角α的增大,边坡安全系数Fs上限解和模拟值均减小,两种方法的计算结果相对误差在5.9%以内,且拓展的破坏机构与数值模拟的剪切耗散变形模式基本一致;在极限状态下,拓展机构的上限解和数值模拟结果都十分接近于1.0,二者相对误差未超过8.3%。研究工作为此类高边坡空间稳定分析问题提供了一种简便实用的计算方法。
    Abstract: For the problem of spatial three-dimensional stability analysis of high slopes in engineering practice where the cut-fill interface intersects obliquely crossing with the slope strike line, an expanded three-dimensional horn-shaped failure mechanism is established based on the upper-bound limit theorem in this paper. Then, the corresponding functional equilibrium equation is formulated by highlighting the slope characteristics by introducing the mechanism parameter dip angle α of the excavation-fill interface. The sequential quadratic programming optimization algorithm is used to solve the safety factor of the upper-bound limit analysis of the strength-discounted slope. On this basis, the high slope project of Miaoling 750 kV substation in Ningxia loess hilly area and the case of the stability factor γH/c under the limit state in the relevant literature are selected as examples, and the computations are compared with the simulated values of finite element limit analysis software. The results show that the upper-bound solution and the simulated value of the safety factor Fs of the slope both decrease with the increase of the dip angle α of the dredge-fill interface. The relative error of the calculated results of the two methods is within 5.9%, and the expanded damage mechanism is basically consistent with the shear dissipation deformation mode of the numerical simulation. In the limit state, the upper-bound solution of the expanded mechanism and the numerical simulation results are very close to 1.0, and the relative error of the two methods does not exceed 8.3%. The research work provides a simple and practical method for the spatial stability analysis of high slopes.
  • 图  1   含挖填界面边坡三维旋转破坏机构

    Figure  1.   Three-dimensional rotation failure mechanism of slope with cut-fill interface

    图  2   安全系数计算流程图

    Figure  2.   Flow chart for calculation of safety factor

    图  3   宁夏妙岭750 kV变电站挖填高边坡场景

    Figure  3.   Excavation and filling of high slope of Miaoling 750 kV substation in Ningxia

    图  4   算例的Optum G3剪切耗散变形图(H=5 m)

    Figure  4.   Optum G3 shear dissipative deformations of example(H=5 m)

    图  5   算例的Optum G3剪切耗散变形图(H=10 m)

    Figure  5.   Optum G3 shear dissipative deformations of example(H=10 m)

    图  6   本文破坏机构滑移面与数值模拟结果对比(H=5 m,α=45°)

    Figure  6.   Comparison of slip surfaces between proposed destructive mechanisms and numerical simulation(H=5 m, α=45°)

    表  1   挖填土层基本物理力学参数

    Table  1   Basic physical and mechanical parameters of excavated and filled soil layers

    土层 黏聚力
    c/kPa
    内摩擦角
    φ/(°)
    重度
    γ/(kN·m-3)
    上层黄土状粉土 12.5 31.0 16.8
    下层黄土状粉质黏土 30.0 31.5 18.9
    下载: 导出CSV

    表  2   两种计算方法结果对比(H=5 m)

    Table  2   Comparison of results of two methods(H=5 m)

    工况 α/(°) Fs 相对误差/%
    Optum G3 本文
    1 30 2.390 2.321 2.9
    2 45 2.265 2.208 2.5
    3 60 2.237 2.140 4.3
    下载: 导出CSV

    表  3   两种计算方法结果对比(H=10 m)

    Table  3   Comparison of results of two methods(H=10 m)

    工况 α/(°) Fs 相对误差/%
    Optum G3 本文
    1 30 1.608 1.574 2.1
    2 45 1.581 1.490 5.8
    3 60 1.555 1.464 5.9
    下载: 导出CSV

    表  4   本文方法与数值模拟结果对比

    Table  4   Comparison between results by proposed method and numerical simulations

    B/H γH/c[12] c/kPa Fs
    Optum G3 本文
    1 19.672 9.150 1.007 0.997
    2 14.875 12.101 1.038 1.000
    3 13.731 13.109 1.070 1.004
    5 12.984 13.863 1.070 1.002
    10 12.494 14.407 1.101 1.010
    下载: 导出CSV
  • [1] 徐光明, 邹广电, 王年香. 倾斜基岩上的边坡破坏模式和稳定性分析[J]. 岩土力学, 2004, 25(5): 703-708.

    XU Guangming, ZOU Guangdian, WANG Nianxiang. Failure mode and stability analysis of soil slope on inclined bedrock[J]. Rock and Soil Mechanics, 2004, 25(5): 703-708. (in Chinese)

    [2] 吴志轩, 张大峰, 孔郁斐, 等. 基-填界面开挖台阶对顺坡填筑高边坡稳定性影响研究[J]. 工程力学, 2019, 36(12): 90-97.

    WU Zhixuan, ZHANG Dafeng, KONG Yufei, et al. Study on stability influence of high slope foundation-fill interfacial excavation steps[J]. Engineering Mechanics, 2019, 36(12): 90-97. (in Chinese)

    [3] 龚伟翔, 张晓超, 裴向军, 等. 基于高陡交填界面软弱带影响下黄土填方边坡失稳模式研究[J]. 工程地质学报, 2023, 31(1): 288-298.

    GONG Weixiang, ZHANG Xiaochao, PEI Xiangjun, et al. Instability modelling of loess fill slope with influence of weak zone of high and steep filling interface[J]. Journal of Engineering Geology, 2023, 31(1): 288-298. (in Chinese)

    [4]

    DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291

    [5]

    CHEN W F. Limit Analysis and Soil Plasticity[M]. New York: Elsevier Scientific Pub Co, 1975.

    [6] 屈智炯, 刘恩龙. 土的塑性力学[M]. 2版. 北京: 科学出版社, 2011.

    QU Zhijiong, LIU Enlong. Plastic Mechanics of Soil[M]. 2nd ed. Beijing: Science Press, 2011. (in Chinese)

    [7]

    SLOAN S W. Geotechnical stability analysis[J]. Géotechnique, 2013, 63(7): 531-571. doi: 10.1680/geot.12.RL.001

    [8]

    CHEN Z Y, WANG X G, HABERFIELD C, et al. A three-dimensional slope stability analysis method using the upper bound theorem[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(3): 369-378. doi: 10.1016/S1365-1609(01)00012-0

    [9]

    CHEN Z Y, WANG J, WANG Y J, et al. A three-dimensional slope stability analysis method using the upper bound theorem-part Ⅱ: numerical approaches, applications and extensions[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(3): 379-397. doi: 10.1016/S1365-1609(01)00013-2

    [10] 杨健, 王玉杰, 陈祖煜. 三维极限分析方法在恰甫其海水利工程边坡稳定分析中的应用[J]. 水利学报, 2003(11): 102-106.

    YANG Jian, WANG Yujie, CHEN Zuyu. Application of three-dimensional limit analysis method in slope stability analysis of Qiafuqihai water conservancy project[J]. Journal of Hydraulic Engineering, 2003(11): 102-106. (in Chinese)

    [11] 杨健, 王玉杰, 陈祖煜, 等. 水电站进水口高边坡稳定性三维极限分析[J]. 岩土力学, 2004, 25(6): 991-994.

    YANG Jian, WANG Yujie, CHEN Zuyu, et al. 3D limit analysis of stability of high slope at intake of huge hydropower station[J]. Rock and Soil Mechanics, 2004, 25(6): 991-994. (in Chinese)

    [12]

    MICHALOWSKI R L, DRESCHER A. Three-dimensional stability of slopes and excavations[J]. Géotechnique, 2009, 59(10): 839-850. doi: 10.1680/geot.8.P.136

    [13]

    MICHALOWSKI R L. Limit analysis and stability charts for 3D slope failures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(4): 583-593. doi: 10.1061/(ASCE)GT.1943-5606.0000251

    [14]

    MICHALOWSKI R L, MARTEL T. Stability charts for 3D failures of steep slopes subjected to seismic excitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(2): 183-189. doi: 10.1061/(ASCE)GT.1943-5606.0000412

    [15]

    MICHALOWSKI R L, NADUKURU S S. Three-dimensional limit analysis of slopes with pore pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1604-1610. doi: 10.1061/(ASCE)GT.1943-5606.0000867

    [16]

    PARK D, MICHALOWSKI R L. Intricacies in three-dimensional limit analysis of earth slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(17): 2109-2129. doi: 10.1002/nag.2846

    [17]

    YANG X L, XU J S. Three-dimensional stability of two-stage slope in inhomogeneous soils[J]. International Journal of Geomechanics, 2017, 17(7): 06016045. doi: 10.1061/(ASCE)GM.1943-5622.0000867

    [18]

    YANG X L, LI Z W. Factor of safety of three-dimensional stepped slopes[J]. International Journal of Geomechanics, 2018, 18(6): 04018036. doi: 10.1061/(ASCE)GM.1943-5622.0001154

    [19] 饶平平, 吴健, 崔纪飞, 等. 裂缝边坡三维极限上限拓展分析[J]. 岩土工程学报, 2021, 43(9): 1612-1620. doi: 10.11779/CJGE202109005

    RAO Pingping, WU Jian, CUI Jifei, et al. Extended three-dimensional analysis of cracked slopes using upper-bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1612-1620. (in Chinese) doi: 10.11779/CJGE202109005

    [20]

    PAN Q J, XU J S, DIAS D. Three-dimensional stability of a slope subjected to seepage forces[J]. International Journal of Geomechanics, 2017, 17(8): 04017035. doi: 10.1061/(ASCE)GM.1943-5622.0000913

    [21] 侯超群, 邓欣, 孙志彬, 等. 非线性准则下三维加筋边坡稳定性的上限分析[J]. 中国公路学报, 2018, 31(2): 124-132.

    HOU Chaoqun, DENG Xin, SUN Zhibin, et al. Upper bound analysis of stability of three-dimensional reinforced slopes based on nonlinear failure criterion[J]. China Journal of Highway and Transport, 2018, 31(2): 124-132. (in Chinese)

    [22] 张标, 王晅, 张家生, 等. 地震效应下二级边坡三维动态稳定性上限分析[J]. 中国公路学报, 2018, 31(2): 86-96.

    ZHANG Biao, WANG Xuan, ZHANG Jiasheng, et al. Upper bound analysis of three-dimensional dynamic stability of secondary slope under earthquake effect[J]. China Journal of Highway and Transport, 2018, 31(2): 86-96. (in Chinese)

    [23]

    LI Y X, YANG X L. Seismic displacement of 3D slope reinforced by piles with nonlinear failure criterion[J]. International Journal of Geomechanics, 2019, 19(6): 04019042. doi: 10.1061/(ASCE)GM.1943-5622.0001411

    [24]

    RAO P P, ZHAO L X, CHEN Q S, et al. Three-dimensional slope stability analysis incorporating coupled effects of pile reinforcement and reservoir drawdown[J]. International Journal of Geomechanics, 2019, 19(4): 06019002. doi: 10.1061/(ASCE)GM.1943-5622.0001375

    [25]

    PANG H P, NIE X P, SUN Z B, et al. Upper bound analysis of 3D-reinforced slope stability subjected to pore-water pressure[J]. International Journal of Geomechanics, 2020, 20(4): 06020002. doi: 10.1061/(ASCE)GM.1943-5622.0001636

    [26] 彭文哲, 赵明华, 肖尧, 等. 抗滑桩加固边坡的稳定性分析及最优桩位的确定[J]. 湖南大学学报(自然科学版), 2020, 47(5): 23-30.

    PENG Wenzhe, ZHAO Minghua, XIAO Yao, et al. Stability analysis of anti-slip pile reinforced slope and determination of optimal pile position[J]. Journal of Hunan University (Science and Technology), 2020, 47(5): 23-30. (in Chinese)

图(6)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回