Experimental study on physical-mineral composition-pollution behaviour interrelations of urban river sediments
-
摘要: 针对福州市晋安区5处物理化学性状不同的代表性内河河道底泥,进行了颗粒分析、黏土矿物成分、界限含水率、烧失量、总氮总磷和重金属测定试验,结合收集的相关文献数据,系统分析了底泥物理–矿物成分与污染物的相互影响。结果表明:河湖库底泥中的污染物不仅与污染源相关,也与底泥颗粒级配和黏土矿物成分有关;底泥中的有机质、总氮、重金属含量与底泥中细颗粒含量的相关性较高,黏粒中的蒙脱石黏土矿物吸附和贮存污染物能力较强;底泥中有机质含量与总氮、总磷含量以及重金属含量之间均具有良好的相关性。Abstract: River and lake pollution is a seriously environmental problem in China. In this study, the particle analysis, clay mineral composition, Atterberg limits, loss of ignition, total nitrogen, total phosphorus and heavy metals tests are carried out for five representative sediments with different physical and chemical properties in Jin'an District, Fuzhou. By considering the collected data from literatures, the interrelations among physical properties, clay minerals and pollutants of sediments are investigated. The results show that the pollutants in the sediments are related to the pollution source and the particle gradation and clay mineral composition of the sediments. The organic matter, total nitrogen and heavy metals in the sediments are highly correlated with fine particle content in the sediments. The smectite clay mineral is conducive to the adsorption and storage of pollutants. There is a good correlation among the organic matter, total nitrogen, total phosphorus and heavy metal content in the sediments.
-
Keywords:
- sediment /
- particle gradation /
- clay mineral /
- pollutant /
- physical property
-
-
表 1 本研究底泥污染物测定方法
Table 1 Method for determination of pollutants in sediments
序号 测试项目 测试方法 试验标准 1 OM 烧失量法 ASTM D2974 2 TN 凯氏法 HJ717—2014 3 TP 钼锑抗分光光度法 HJ 632—2011 4 重金属 ICP-MS法 US EPA 3050B 表 2 本研究底泥颗粒组成、黏土矿物组成及界限含水率
Table 2 Particle composition, clay mineral composition and atterberg limits of sediments
(%) 底泥 颗粒组成 矿物组成 wL wP Clay Silt Sand I K C S A 42.4 47.5 10.2 19 48 24 9 79.2 35.3 B 12.3 78.8 8.9 22 59 19 0 44.0 31.5 C 12.3 82.9 4.8 33 47 20 0 38.5 23.3 D 26.0 64.0 10.0 27 53 20 0 83.6 35.0 E 28.3 62.4 9.3 24 46 30 0 111.9 44.0 表 3 不同文献收集的底泥数据
Table 3 Database of sediment pollutants compiled from literatures
序号 颗粒级配 界限
含水率黏土矿物 污染物 主要污染来源 参考文献 OM TN TP Cu Zn Ni Pb 1 √ — — √ √ √ — — — — — 魏岚等[6] 2 √ — — √ √ √ — — — — — Xia等[7] 3 — — — √ √ √ — — — — 生活污水 孙广垠等[8] 4 √ — — — √ √ — — — — 废水、肥料 余成等[9] 5 √ — — — — — √ √ √ √ 废水 El-Sayed等[10] 6 √ — — — — — √ √ √ √ 养殖场 Wang等[11] 7 — — √ √ — — — — — — — Khim[12] 8 — — √ √ — — — — — — — Andrade等[13] 9 — — — √ — — √ √ √ √ 生活污水 Nguyen等 [14] 10 — — — √ — — √ √ √ √ 生活污水 牛红义等[15] 11 — — — — √ √ √ √ √ √ 废水 严玉林[16] 12 — √ — √ — — — — — — — 徐日庆等[17] 13 — √ — √ — — — — — — — Stanchi等 [18] 14 — √ — — — — √ — — — — Phanija等 [19] 15 — √ — — — — — √ — — — 储亚等[20] 16 — √ — — — — — — — √ — Ayodele等 [21] 17 — √ — — — — √ √ — √ — 吕伟豪[22] 表 4 底泥污染物及物理性质的相关系数
Table 4 Correlation coefficients of sediment pollutants and physical properties
污染物与底泥颗粒级配 污染物与黏土矿物 污染物与污染物 污染物与底泥物理性质 Clay OM 0.231 Illite OM -0.099 OM TN 0.809 OM wL 0.915 Silt OM 0.524 Kaolinite OM -0.185 OM TP 0.456 OM wP 0.916 Sand OM -0.485 Chlorite OM -0.194 TN TP 0.623 OM IP 0.797 Clay+Silt OM 0.717 Smectite OM 0.020 OM Cu 0.636 TN wL 0.254 Clay TN 0.686 Illite TN -0.249 OM Zn 0.794 TN wP 0.242 Clay TP 0.439 Illite TP -0.356 OM Ni 0.490 TN IP 0.161 Silt TN -0.026 Kaolinite TN -0.216 OM Pb 0.777 TP wL -0.009 Silt TP -0.097 Kaolinite TP -0.269 TN Cu 0.452 TP wP -0.005 Sand TN -0.763 Chlorite TN 0.485 TN Zn 0.603 TP IP -0.033 Sand TP 0.321 Chlorite TP 0.264 TN Ni 0.511 Cu wL -0.342 Clay+Silt TN 0.763 Smectite TN 0.197 TN Pb 0.433 Cu wP 0.300 Clay+Silt TP 0.321 Smectite TP 0.054 TP Cu 0.335 Cu IP -0.350 Clay Cu 0.355 Illite Cu -0.216 TP Zn 0.577 Zn wL -0.331 Clay Zn 0.363 Illite Zn -0.382 TP Ni 0.203 Zn wP -0.317 Clay Ni 0.335 Illite Ni -0.270 TP Pb 0.501 Zn IP 0.275 Clay Pb 0.335 Illite Pb -0.286 Cu Zn 0.655 Pb wL 0.067 Silt Cu 0.572 Kaolinite Cu -0.229 Cu Ni 0.610 Pb wP -0.365 Silt Zn 0.558 Kaolinite Zn -0.329 Cu Pb 0.551 Pb IP 0.112 Silt Ni 0.639 Kaolinite Ni -0.245 Zn Ni 0.539 Silt Pb 0.006 Kaolinite Pb 0.047 Zn Pb 0.729 Sand Cu -0.555 Chlorite Cu 0.258 Ni Pb 0.406 Sand Zn -0.593 Chlorite Zn 0.482 Sand Ni -0.641 Chlorite Ni 0.445 Sand Pb -0.292 Chlorite Pb 0.362 Clay+Silt Cu 0.554 Smectite Cu -0.137 Clay+Silt Zn 0.591 Smectite Zn -0.214 Clay+Silt Ni 0.635 Smectite Ni -0.159 Clay+Silt Pb 0.295 Smectite Pb 0.103 -
[1] 曹承进, 陈振楼, 王军, 等. 城市黑臭河道底泥生态疏浚技术进展[J]. 华东师范大学学报(自然科学版), 2011(1): 32–42. doi: 10.3969/j.issn.1000-5641.2011.01.004 CAO Cheng-jin, CHEN Zhen-lou, WANG Jun, et al. Review of sediment ecological dredging in urban black-odors river treatment[J]. Journal of East China Normal University (Natural Science), 2011(1): 32–42. (in Chinese) doi: 10.3969/j.issn.1000-5641.2011.01.004
[2] MAYER L M, MACKO S A, CAMMEN L. Provenance, concentrations and nature of sedimentary organic nitrogen in the gulf of Maine[J]. Marine Chemistry, 1988, 25(3): 291–304. doi: 10.1016/0304-4203(88)90056-4
[3] 薛含斌. 底泥腐殖酸在黏土矿物上的吸附特性[J]. 环境化学, 1983, 2(3): 42–46. XUE Han-bin. Adsorption characteristics of humic acid in sediment on clay minerals[J]. Environmental Chemistry, 1983, 2(3): 42–46. (in Chinese)
[4] ODELL R T, THORNBURN T H, MCKENZIE L J. Relationships of atterberg limits to some other properties of Illinois soils[J]. Soil Science Society of America Journal, 1960, 24(4): 297–300. doi: 10.2136/sssaj1960.03615995002400040025x
[5] ZENG L L, HONG Z S, WANG C, et al. Experimental study on physical properties of clays with organic matter soluble and insoluble in water[J]. Applied Clay Science, 2016, 132/133: 660–667. doi: 10.1016/j.clay.2016.08.018
[6] 魏岚, 刘传平, 邹献中, 等. 广东省不同水库底泥理化性质对内源氮磷释放影响[J]. 生态环境学报, 2012, 21(7): 1304–1310. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201207021.htm WEI Lan, LIU Chuan-ping, ZOU Xian-zhong, et al. Release of nitrogen and phosphorus from the sediments of ten reservoirs in Guangdong Province[J]. Ecology and Environmental Sciences, 2012, 21(7): 1304–1310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201207021.htm
[7] XIA P, MENG X W, YIN P, et al. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River Estuary, Beibu Gulf of South China Sea[J]. Environmental Pollution, 2011, 159(1): 92–99. doi: 10.1016/j.envpol.2010.09.014
[8] 孙广垠, 刘勇, 郄雨康, 等. 原著湿地公园底泥中氮、磷和有机质的分布规律[J]. 中国给水排水, 2018, 34(21): 92–95. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201821021.htm SUN Guang-yin, LIU Yong, QIE Yu-kang, et al. Distribution of nitrogen, phosphorus and organic matter in sediments of an original wetland park[J]. China Water & Wastewater, 2018, 34(21): 92–95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201821021.htm
[9] 余成, 陈爽, 张路, 等. 坦噶尼喀湖东北部入湖河流表层沉积物中磷的形态和分布特征[J]. 湖泊科学, 2017, 29(2): 334–342. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201702009.htm YU Cheng, CHEN Shuang, ZHANG Lu, et al. Phosphorus fractions and their spatial distribution in surface sediments of inflow rivers in the northeastern Lake Tanganyika[J]. Journal of Lake Sciences, 2017, 29(2): 334–342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201702009.htm
[10] EL-SAYED S A, MOUSSA E M M, EL-SABAGH M E I. Evaluation of heavy metal content in Qaroun Lake, El-Fayoum, Egypt. Part Ⅰ: bottom sediments[J]. Journal of Radiation Research and Applied Sciences, 2015, 8(3): 276–285. doi: 10.1016/j.jrras.2015.02.011
[11] WANG A J, BONG C W, XU Y H, et al. Assessment of heavy metal pollution in surficial sediments from a tropical river-estuary-shelf system: a case study of Kelantan River, Malaysia[J]. Marine Pollution Bulletin, 2017, 125(1/2): 492-500.
[12] KHIM B K. Two modes of clay-mineral dispersal pathways on the continental shelves of the East Siberian Sea and western Chukchi Sea[J]. Geosciences Journal, 2003, 7(3): 253–262. doi: 10.1007/BF02910292
[13] ANDRADE G P, AZEVEDO A D, CUADROS J, et al. Transformation of kaolinite into smectite and iron-illite in brazilian mangrove soils[J]. Soil Science Society of America Journal, 2014, 78(2): 655–672.
[14] NGUYEN H T L, OHTSUBO M, LI L, et al. Heavy metal characterization and leachability of organic matter-rich river sediments in Hanoi, Vietnam[J]. International Journal of Soil, Sediment and Water, 2010, 3(1): 5.
[15] 牛红义, 吴群河, 陈新庚. 珠江(广州河段)表层底泥中污染物的相关性研究[J]. 环境科学与技术, 2007(增刊1): 41–43. NIU Hong-yi, WU Qun-he, CHEN Xin-geng. Correlation of pollutants in surface sediments in Guangzhou section of Pearl River[J]. Environmental Science and Technology, 2007(S1): 41–43. (in Chinese)
[16] 严玉林. 北运河底泥污染物评价及资源化利用研究[J]. 人民珠江, 2020, 41(8): 132–138. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ202008021.htm YAN Yu-lin. Study of the sediment pollutant evaluation and resource utilization in the north canal[J]. Pearl River, 2020, 41(8): 132–138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ202008021.htm
[17] 徐日庆, 郭印, 刘增永. 人工制备有机质固化土力学特性试验研究[J]. 浙江大学学报(工学版), 2007, 41(1): 109–113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200701019.htm XU Ri-qing, GUO Yin, LIU Zeng-yong. Experimental study on mechanical properties of stabilized artificial organic soil[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(1): 109–113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200701019.htm
[18] STANCHI S, CATONI M, D'AMICO M E, et al. Liquid and plastic limits of clayey, organic C-rich mountain soils: role of organic matter and mineralogy[J]. Catena, 2017, 151: 238–246.
[19] PHANIJA N, CHAVALI R V P. Solidification/stabilization of copper-contaminated soil using phosphogypsum[J]. Innovative Infrastructure Solutions, 2021, 6(3): 1–11.
[20] 储亚, 刘松玉, 蔡国军, 等. 锌污染土物理与电学特性试验研究[J]. 岩土力学, 2015, 36(10): 2862–2868. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510017.htm CHU Ya, LIU Song-yu, CAI Guo-jun, et al. An experimental study of physical and electrical characteristics of zinc contaminated silty clay[J]. Rock and Soil Mechanics, 2015, 36(10): 2862–2868. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510017.htm
[21] AYODELE A L, BABALOLA O T, AGBEDE O A. The effects of ferrous sulphate heptahydrate and lead nitrate on the Atterberg limits and consolidation indices of laterite[J]. Ife Journal of Technology, 2013, 22(1): 39–45.
[22] 吕伟豪. 重金属污染的南阳膨胀土物理力学特性试验研究[D]. 郑州: 中原工学院, 2018. LÜ Wei-hao. Experimental Study on the Physical Mechanical Properties of Heavy Metal Contaminated Expansive Soil in Nanyang[D]. Zhengzhou: Zhongyuan University of Technology, 2018. (in Chinese)