• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于CEL的灵敏性黏土斜坡渐进破坏数值模拟研究

沈佳轶, 陈前, 库猛, 王立忠

沈佳轶, 陈前, 库猛, 王立忠. 基于CEL的灵敏性黏土斜坡渐进破坏数值模拟研究[J]. 岩土工程学报, 2022, 44(12): 2297-2303. DOI: 10.11779/CJGE202212017
引用本文: 沈佳轶, 陈前, 库猛, 王立忠. 基于CEL的灵敏性黏土斜坡渐进破坏数值模拟研究[J]. 岩土工程学报, 2022, 44(12): 2297-2303. DOI: 10.11779/CJGE202212017
SHEN Jia-yi, CHEN Qian, KU Meng, WANG Li-zhong. Numerical simulation of progressive failure of sensitive clay slopes using CEL method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2297-2303. DOI: 10.11779/CJGE202212017
Citation: SHEN Jia-yi, CHEN Qian, KU Meng, WANG Li-zhong. Numerical simulation of progressive failure of sensitive clay slopes using CEL method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2297-2303. DOI: 10.11779/CJGE202212017

基于CEL的灵敏性黏土斜坡渐进破坏数值模拟研究  English Version

基金项目: 

中央高校基本科研业务费专项基金项目 2021QNA4037

国家自然科学基金项目 51939010

详细信息
    作者简介:

    沈佳轶(1983—),男,副教授,主要从事边坡及地下工程、岩体强度理论和海洋岩土工程的研究。Email: jiayi@zju.edu.cn

  • 中图分类号: TU43

Numerical simulation of progressive failure of sensitive clay slopes using CEL method

  • 摘要: 为了揭示灵敏性黏土斜坡渐进破坏机理,以加拿大Saint-Jude滑坡为研究案例,采用耦合欧拉-拉格朗日(Coupled Eulerian-Lagrangian,CEL)框架下的欧拉方法,开展灵敏性黏土斜坡渐进破坏数值模拟研究。研究结果表明:CEL数值模拟得到的Saint-Jude滑坡地形与现场勘测滑坡地形基本一致;CEL数值模拟方法可以有效地模拟灵敏性黏土斜坡从初始失稳破坏到后续渐进破坏的全过程,真实还原Saint-Jude滑坡的渐进破坏模式;CEL数值模拟方法有效地模拟灵敏性黏土斜坡渐进破坏过程中剪应力的演化特征,从而揭示灵敏性黏土斜坡渐进破坏机理。
    Abstract: In order to reveal the mechanism of the progressive failure of sensitive clay slopes, the Saint-Jude landslide in Canada is used as a research case, and the Eulerian approach under the coupled Eulerian-Lagrangian (CEL) framework is used to carry out the numerical simulation. The research results show that: (1) The topography of the Saint-Jude landslide obtained by the CEL numerical simulation is basically consistent with the field surveyed one. (2) The CEL numerical simulation method can effectively simulate the sensitive clay landslides from the initial instability failure to the subsequent progressive failure, and the progressive failure mode of the Saint-Jude landslide can be truly simulated. (3) The CEL numerical simulation method effectively captures the characteristics of shear stress during the progressive failure of the sensitive clay slope, thereby revealing the mechanism of progressive failure of sensitive clay slopes.
  • 图  1   灵敏性黏土斜坡渐进破坏[6]

    Figure  1.   Progressive failure of sensitive clay slope [6]

    图  2   Saint-Jude滑坡[1]

    Figure  2.   Saint-Jude landslide [1]

    图  3   断面B-B'的地形图[1]

    Figure  3.   Topographic section B-B' [1]

    图  4   欧拉公式的算子分裂[17]

    Figure  4.   Operator splitting of Eulerian formulation[17]

    图  5   Saint-Jude滑坡示意图

    Figure  5.   Diagram of Saint-Jude landslide

    图  6   Saint-Jude滑坡渐进破坏等效塑性应变云图

    Figure  6.   Contours of equivalent plastic strain of progressive failure of Saint-Jude landslide

    图  7   Saint-Jude滑坡渐进破坏剪应力云图和底部剪应力分布

    Figure  7.   Contours of shear stress of progressive failure of the Saint-Jude landslide and distribution of bottom shear stress

    表  1   Saint-Jude滑坡土体力学参数[1]

    Table  1   Mechanical parameters of soil of Saint-Jude landslide [1]

    参数 重度γ/(kN·m-3) 弹性
    模量E/MPa
    泊松比ν 峰值不排水抗剪强度τp/kPa 残余不排水抗剪强度τr/kPa 参考等效塑性应变κ¯
    灵敏性黏土 16.0 10 0.49 45 1.6 1.6
    覆土 18.6 10 0.49 75
    下载: 导出CSV
  • [1]

    LOCAT A, LOCAT P, DEMERS D, et al. The Saint-Jude landslide of 10 May 2010, Quebec, Canada: investigation and characterization of the landslide and its failure mechanism[J]. Canadian Geotechnical Journal, 2017, 54(10): 1357–1374. doi: 10.1139/cgj-2017-0085

    [2]

    LINDBERG F, OLVMO M, BERGDAHL K. Mapping areas of potential slope failures in cohesive soils using a shadow-casting algorithm – A case study from SW Sweden[J]. Computers and Geotechnics, 2011, 38(6): 791–799. doi: 10.1016/j.compgeo.2011.05.003

    [3]

    GEERTSEMA M, TORRANCE J K. Quick clay from the mink creek landslide near terrace, British Columbia: geotechnical properties, mineralogy, and geochemistry[J]. Canadian Geotechnical Journal, 2005, 42(3): 907–918. doi: 10.1139/t05-028

    [4]

    SKEMPTON A W. Long-term stability of clay slopes[J]. Géotechnique, 1964, 14(2): 77–102. doi: 10.1680/geot.1964.14.2.77

    [5]

    TERZAGHI K, PECK R. Soil Mechanics in Engineering Practice[M]. New York: John Wiley and Sons, Inc, 1948.

    [6]

    LOCAT A, LEROUEIL S, BERNANDER S, et al. Progressive failures in eastern Canadian and Scandinavian sensitive clays[J]. Canadian Geotechnical Journal, 2011, 48(11): 1696–1712. doi: 10.1139/t11-059

    [7]

    BERNANDER S, KULLINGSJÖ A, GYLLAND A S, et al. Downhill progressive landslides in long natural slopes: triggering agents and landslide phases modeled with a finite difference method[J]. Canadian Geotechnical Journal, 2016, 53(10): 1565–1582. doi: 10.1139/cgj-2015-0651

    [8]

    LOCAT A, JOSTAD H P, LEROUEIL S. Numerical modeling of progressive failure and its implications for spreads in sensitive clays[J]. Canadian Geotechnical Journal, 2013, 50(9): 961–978. doi: 10.1139/cgj-2012-0390

    [9]

    QUINN P E, DIEDERICHS M S, ROWE R K, et al. A new model for large landslides in sensitive clay using a fracture mechanics approach[J]. Canadian Geotechnical Journal, 2011, 48(8): 1151–1162. doi: 10.1139/t11-025

    [10]

    QUINN P E, DIEDERICHS M S, ROWE R K, et al. Development of progressive failure in sensitive clay slopes[J]. Canadian Geotechnical Journal, 2012, 49(7): 782–795. doi: 10.1139/t2012-034

    [11]

    PALMER A, RICE J. The growth of slip surfaces in the progressive failure of over-consolidated clay[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1973, 332(1591): 527–548.

    [12]

    ZHANG X, WANG L, KRABBENHOFT K, et al. A case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslide[J]. Landslides, 2020, 17(5): 1117–1127. doi: 10.1007/s10346-019-01330-4

    [13]

    SHAN Z G, ZHANG W C, WANG D, et al. Numerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slide, Quebec[J]. Landslides, 2021, 18(4): 1327–1336. doi: 10.1007/s10346-020-01567-4

    [14]

    TRAPPER P A, PUZRIN A M, GERMANOVICH L N. Effects of shear band propagation on early waves generated by initial breakoff of tsunamigenic landslides[J]. Marine Geology, 2015, 370: 99–112. doi: 10.1016/j.margeo.2015.10.014

    [15]

    DEY R, HAWLADER B, PHILLIPS R, et al. Large deformation finite-element modelling of progressive failure leading to spread in sensitive clay slopes[J]. Géotechnique, 2015, 65(8): 657–668. doi: 10.1680/geot.14.P.193

    [16]

    DEY R, HAWLADER B, PHILLIPS R, et al. Numerical modeling of combined effects of upward and downward propagation of shear bands on stability of slopes with sensitive clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(15): 2076–2099. doi: 10.1002/nag.2522

    [17]

    BENSON D J, OKAZAWA S. Contact in a multi-material Eulerian finite element formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39/40/41): 4277–4298.

    [18]

    BENSON D J. A multi-material Eulerian formulation for the efficient solution of impact and penetration problems[J]. Computational Mechanics, 1995, 15(6): 558–571. doi: 10.1007/BF00350268

图(7)  /  表(1)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  49
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回