• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

钙质结核含量对钙质结核土压缩性缩尺效应影响研究

梁传扬, 吴跃东, 刘坚, 刘辉, 陈大硕, 林来贺

梁传扬, 吴跃东, 刘坚, 刘辉, 陈大硕, 林来贺. 钙质结核含量对钙质结核土压缩性缩尺效应影响研究[J]. 岩土工程学报, 2022, 44(12): 2272-2279. DOI: 10.11779/CJGE202212014
引用本文: 梁传扬, 吴跃东, 刘坚, 刘辉, 陈大硕, 林来贺. 钙质结核含量对钙质结核土压缩性缩尺效应影响研究[J]. 岩土工程学报, 2022, 44(12): 2272-2279. DOI: 10.11779/CJGE202212014
LIANG Chuan-yang, WU Yue-dong, LIU Jian, LIU Hui, CHEN Da-shuo, LIN Lai-he. Influences of calcareous nodule content on scale effects of compressibility of cohesive soil containing calcareous nodules[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2272-2279. DOI: 10.11779/CJGE202212014
Citation: LIANG Chuan-yang, WU Yue-dong, LIU Jian, LIU Hui, CHEN Da-shuo, LIN Lai-he. Influences of calcareous nodule content on scale effects of compressibility of cohesive soil containing calcareous nodules[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2272-2279. DOI: 10.11779/CJGE202212014

钙质结核含量对钙质结核土压缩性缩尺效应影响研究  English Version

基金项目: 

江苏省研究生科研与实践创新计划项目 KYCX19-0419

中央高校基本科研业务费项目 2019B73814

详细信息
    作者简介:

    梁传扬(1993—),男,博士研究生,从事岩土工程特性与软基处理研究。E-mail: hhulcy@qq.com

    通讯作者:

    吴跃东, E-mail: hhuwyd@163.com

  • 中图分类号: TU43

Influences of calcareous nodule content on scale effects of compressibility of cohesive soil containing calcareous nodules

  • 摘要: 钙质结核土的大尺寸试样和缩尺试样在压缩性等物理力学性质上存在缩尺效应,其主要受土体中钙质结核含量和级配组成的影响。然而,现有研究关注更多的是土体的级配组成对缩尺效应的影响,而忽略了钙质结核含量的影响效果。为此探讨了钙质结核含量对钙质结核土压缩性缩尺效应的影响行为,并揭示了其作用机理。研究结果表明:土体压缩性缩尺效应与钙质结核含量之间呈现阶梯曲线的关系,主要归因于在相同的钙质结核含量下,缩尺试样中的钙质结核更容易形成骨架效应。基于此,提出了一种考虑钙质结核骨架效应的土样屈服应力和压缩指数的计算模型,以减少试样的缩尺效应的影响。该计算模型可为利用缩尺试样压缩试验结果来获得大尺寸样压缩性参数提供新途径,经验证,计算结果可靠。
    Abstract: The samples of cohesive soil containing calcareous nodules (CSCN) with large and corresponding scale sizes have scale effects on the physical and mechanical properties such as compressibility, which are mainly affected by the calcareous nodule content (CNC) and the gradation composition. However, the current researches pay more attention to the influences of the gradation composition on the scale effects, while ignoring those of the CNC. The influences of the CNC on the scale effects of compressibility of the CSCN are discussed, and the relevant mechanism is revealed. The results show that the correlation between the scale effects of compressibility and the CNC is a step curve, which is mainly due to the fact that the calcareous nodules in the samples with the scale size are easier to form the skeleton effects under the same CNC. Based on this, considering the skeleton effects of calcareous nodules, a model for calculating the yield stress and compression index of samples is proposed to reduce the scale effects of samples. The proposed model may provide a new approach to obtain the compressibility parameters of samples with a large size by using the compression test results of samples with the corresponding scale size, which is reliable.
  • 图  1   大型固结仪实物图

    Figure  1.   Photo of large-size oedometer

    图  2   钙质结核土的级配曲线

    Figure  2.   Grain-size distribution curves of samples of cohesive soil containing calcareous nodules

    图  3   钙质结核土大尺寸样和缩尺试样的压缩曲线

    Figure  3.   Compression curves of samples with large size and corresponding scaling size

    图  4   钙质结核土试样的屈服应力及其缩尺效应与钙质结核含量关系

    Figure  4.   Relationship between yield stress of samples and CNC

    图  5   钙质结核土试样的压缩指数及其缩尺效应与钙质结核含量关系

    Figure  5.   Relationship between compression index of samples and CNC

    图  6   钙质结核骨架效应形成示意图

    Figure  6.   Schematic diagram of skeleton effects formation of calcareous nodules

    图  7   试样压缩参数与钙质结核接触数关系

    Figure  7.   Relationship between compression parameters and contacts of calcareous nodules

    图  8   试样压缩参数的计算值和试验值比较

    Figure  8.   Comparison between calculated and measured compression parameters

    表  1   验证数据与模型计算参数

    Table  1   Data and model parameters

    钙质结核含量/% 接触数 /kPa 屈服应力/kPa 压缩指数
    计算值 试验值 计算值 试验值
    5 21 49.6 0.0298 0.075 -0.0003 50.2 50.0 0.069 0.066
    10 58 51.3 51.0 0.058 0.055
    15 77 51.9 51.4 0.052 0.054
    20 91 52.3 52.1 0.048 0.051
    下载: 导出CSV
  • [1]

    JI B, WU D X. GIS-based quantitative analysis for mesostructure of cohesive soil containing calcareous nodules[J]. Advanced Materials Research, 2014(860/861/862/863): 1284–1288.

    [2]

    WANG X Z, WANG X, JIN Z C, et al. Shear characteristics of calcareous gravelly soil[J]. Bulletin of Engineering Geology & the Environment, 2017, 76(2): 561–573.

    [3]

    DELGADO A R, JOSÉ R, DEL C M D C, et al. Calcium- and iron-related phosphorus in calcareous and calcareous marsh soils: sequential chemical fractionation and 31 p nuclear magnetic resonance study[J]. Communications in Soil Science & Plant Analysis, 2000, 31(15/16): 2483–2499.

    [4]

    INGLETT P W, INGLETT K S. Biogeochemical changes during early development of restored calcareous wetland soils[J]. Geoderma, 2013, 192(1): 132–141.

    [5] 吴道祥, 曹亚娟, 钟轩民, 等. 安徽淮北平原钙质结核土分布及成因年代研究[J]. 岩土力学, 2009, 30(增刊2): 434–439. doi: 10.16285/j.rsm.2009.s2.006

    WU Dao-xiang, CAO Ya-juan, ZHONG Xuan-min, et al. Study on distribution and genetic age of cohesive soil containing calcareous nodules in Huaibei Plain of Anhui Province[J]. Rock and Soil Mechanics, 2009, 30(S2): 434–439. (in Chinese) doi: 10.16285/j.rsm.2009.s2.006

    [6]

    GOUGH R E. Calcareous soil[J]. Glossary of Vital Terms for the Home Gardener, 1993: 123–131.

    [7] 何礼秋, 禹峰, 仝其波. 钙质结核土工程地质特性试验方法研究[J]. 工程与建设, 2015, 29(4): 522–524. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201504037.htm

    HE Li-qiu, YU Feng, TONG Qi-bo. Study on test method of engineering geological characteristics of cohesive soil containing calcareous nodules[J]. Engineering and Construction, 2015, 29(4): 522–524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201504037.htm

    [8] 郦能惠, 朱铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39–42. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200102011.htm

    LI Neng-hui, ZHU Tie, MI Zhan-kuan. Strength and deformation properties of transition zone material of Xiaolangdi Dam and scale effect[J]. Hydroelectric Energy, 2001, 19(2): 39–42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200102011.htm

    [9] 陆会青. 关于粗粒土原级配大型固结试验的几点体会[J]. 大坝观测与土工测试, 1994, 18(6): 42–45. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC406.007.htm

    LU Hui-qing. Some experience on large-scale consolidation test of original gradation of coarse grained soil[J]. Dam Observation and Geotechnical Tests, 1994, 18(6): 42–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC406.007.htm

    [10] 赵娜, 左永振, 王占彬, 等. 基于分形理论的粗粒料级配缩尺方法研究[J]. 岩土力学, 2016, 37(12): 3513–3519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612021.htm

    ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin, et al. Grading scale method for coarse-grained soils based on fractal theory[J]. Rock and Soil Mechanics, 2016, 37(12): 3513–3519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612021.htm

    [11]

    XU W J, ZHANG H Y. Research on the effect of rock content and sample size on the strength behavior of soil-rock mixture[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(3): 2715–2726. doi: 10.1007/s10064-020-02050-z

    [12] 翁厚洋. 粗粒料缩尺效应试验研究[D]. 南京: 河海大学, 2008.

    WENG Hou-yang. Experimental Study on Scale Effect of Coarse Aggregate[D]. Nanjing: Hohai University, 2008. (in Chinese)

    [13] 蓝天鹏, 吴道祥, 杨远杰, 等. 钙质结核土及其大型直剪试验研究[J]. 合肥工业大学学报(自然科学版), 2012, 35(2): 257–261. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201202026.htm

    LAN Tian-peng, WU Dao-xiang, YANG Yuan-jie, et al. Research on cohesive soil containing calcareous nodule and its large direct shear test[J]. Journal of Hefei University of Technology (Natural Science), 2012, 35(2): 257–261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201202026.htm

    [14] 吴二鲁, 朱俊高, 郭万里, 等. 缩尺效应对粗粒料压实密度影响的试验研究[J]. 岩土工程学报, 2019, 41(9): 1767–1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909026.htm

    WU Er-lu, ZHU Jun-gao, GUO Wan-li, et al. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767–1772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909026.htm

    [15]

    MARSCHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(1): 95–114.

    [16] 花俊杰, 周伟, 常晓林, 等. 堆石体应力变形的尺寸效应研究[J]. 岩石力学与工程学报, 2010, 29(2): 328–335. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002016.htm

    HUA Jun-jie, ZHOU Wei, CHANG Xiao-lin, et al. Study of scale effect on stress and deformation of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 328–335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002016.htm

    [17]

    ZHU J G, GUO W L, WEN Y F, et al. New gradation equation and applicability for particle-size distributions of various soils[J]. International Journal of Geomechanics, 2018, 18(2): 04017155.

    [18] 褚福永, 朱俊高, 翁厚洋, 等. 粗粒料级配缩尺后最大干密度试验研究[J]. 岩土力学, 2020, 41(5): 1599–1604. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005017.htm

    CHU Fu-yong, ZHU Jun-gao, WENG Hou-yang, et al. Experimental study on maximum dry density of scaled coarse-grained soil[J]. Rock and Soil Mechanics, 2020, 41(5): 1599–1604. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005017.htm

    [19] 土工试验方法标准: GB/T 50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)

    [20] 土的工程分类标准: GB/T 50145—2007[S]. 2007.

    Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. 2007. (in Chinese)

    [21]

    BIAN X, WANG Z F, DING G Q, et al. Compressibility of cemented dredged clay at high water content with super-absorbent polymer[J]. Engineering Geology, 2016, 208: 198–05.

    [22]

    POPESCU M E. An introduction to geotechnical engineering[J]. Engineering Geology, 1986, 22(4): 377.

    [23]

    ZHANG Z P, SHENG Q, FU X D, et al. An approach to predicting the shear strength of soil-rock mixture based on rock block proportion[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2423–2437.

    [24]

    SHI C, YANG W K, YANG J X, et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter, 2019, 21(2): 1–13.

    [25]

    ALONSO E E, ROMERO E, HOFFMANN C. Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study[J]. Géotechnique, 2011, 61(4): 329–344.

    [26] 杨贵, 刘汉龙, 陈育民, 等. 堆石料动力变形特性的尺寸效应研究[J]. 水力发电学报, 2009, 28(5): 121–126. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905023.htm

    YANG Gui, LIU Han-long, CHEN Yu-min, et al. Research on size effect of rock-fill materials on dynamic deformation property[J]. Journal of Hydroelectric Engineering, 2009, 28(5): 121–126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905023.htm

    [27] 张慧杰. 钙质结核土细观结构要素电阻率试验研究[D]. 合肥: 合肥工业大学, 2018.

    ZHANG Hui-jie. Experimental Study on Resistivity of Mesoscopic Structural Elements of Cohesive Soil Containing Calcareous[D]. Hefei: Hefei University of Technology, 2018. (in Chinese)

图(8)  /  表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  40
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回