• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于空腔膨胀理论的TBM盘形滚刀侵岩载荷模型建模分析及试验验证

张魁, 张玉林, 郑学军, 周友行, 乔硕

张魁, 张玉林, 郑学军, 周友行, 乔硕. 基于空腔膨胀理论的TBM盘形滚刀侵岩载荷模型建模分析及试验验证[J]. 岩土工程学报, 2022, 44(12): 2263-2271. DOI: 10.11779/CJGE202212013
引用本文: 张魁, 张玉林, 郑学军, 周友行, 乔硕. 基于空腔膨胀理论的TBM盘形滚刀侵岩载荷模型建模分析及试验验证[J]. 岩土工程学报, 2022, 44(12): 2263-2271. DOI: 10.11779/CJGE202212013
ZHANG Kui, ZHANG Yu-lin, ZHENG Xue-jun, ZHOU You-hang, QIAO Shuo. Establishment and experimental verification of rock penetration load model for TBM disc cutters based on cavity expansion theory[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2263-2271. DOI: 10.11779/CJGE202212013
Citation: ZHANG Kui, ZHANG Yu-lin, ZHENG Xue-jun, ZHOU You-hang, QIAO Shuo. Establishment and experimental verification of rock penetration load model for TBM disc cutters based on cavity expansion theory[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2263-2271. DOI: 10.11779/CJGE202212013

基于空腔膨胀理论的TBM盘形滚刀侵岩载荷模型建模分析及试验验证  English Version

基金项目: 

国家自然科学基金项目 51704256

国家自然科学基金项目 11832016

国家自然科学基金项目 52175254

湖南省科技创新计划项目 2021RC2094

湖南省科技创新计划项目 2020RC2037

国家重点研发计划项目 YFB400800

合肥通用机械研究院有限公司项目 2021ZKKF043

详细信息
    作者简介:

    张魁(1985—),男,博士,副教授,硕士生导师,主要从事大型全断面隧道掘进装备破岩机理及其制造工艺研究。E-mail:zhangk@xtu.edu.cn

    通讯作者:

    郑学军, E-mail: zhengxuejun@xtu.edu.cn

  • 中图分类号: TU94

Establishment and experimental verification of rock penetration load model for TBM disc cutters based on cavity expansion theory

  • 摘要: 刃底密实核动态衍生现象严重影响了盘形滚刀的破岩机理,进而一定程度上影响了全断面岩石隧道掘进机(TBM)的掘进效能。参考H Alehossein钝楔形压头侵岩模型,将密实核衍生现象及密实核区周围复杂的应力场纳入考察,基于空腔膨胀理论和离散化建模思路,建立了常截面平刃滚刀侵岩模型。随后,分别以滚刀所受垂直力和刃底无因次平均接触应力为性能指标,将滚刀侵岩过程中刀圈刃部横截面几何尺寸参数和岩石物理力学性能参数作为考察变量,针对上述所建侵岩模型开展了十因素两水平的正交试验分析,探究了各考察变量的敏感程度,并分析了无因次平均接触应力的变化规律。最后,选取了2种具有不同粒径的岩石试样,制备了4种刀圈压头,并在TRW-3000三轴冲击破岩试验机上开展了侵岩试验验证。研究结果表明:对于垂直力和无因次平均接触应力而言,刀刃宽和侵深均为敏感因素;由于将密实核现象纳入考核,在滚刀压头侵岩作用下位于刃底的岩石应力水平明显大于单轴抗压强度;所建模型对于在第一次阶跃破碎之前的侵岩载荷速率的预测误差最大不超过10%,这表明模型具有良好的准确性。
    Abstract: The dynamic derivation of dense core at the cutter bottom seriously affects the rock-breaking mechanism of disc cutter (hereinafter referred to as cutter), and then affects the tunneling efficiency of full face rock tunnel boring machine (TBM) to a certain extent. Referring to the H. Alehossein blunt wedge indenter rock penetration model, the derivation phenomenon of dense core and the complex stress field around the dense core area is investigted, and a constant cross-section flat edge disc cutter (hereinafter referred to as cutter) rock penetration model is established based on the cavity expansion theory and discrete modeling idea. Then, taking the vertical force and dimensionless average contact stress as the performance evaluation indices, and selecting the geometric dimension parameters of the blade section of the cutter ring and the physical and mechanical property parameters of the rock as the variables, the ten-factor and two-level L12 (211) orthogonal tests are carried out. It is found that the blade width and penetration depth are the most sensitive factors. After that, the change characteristics of dimensionless contact stress at the cutter ring bottom are analyzed. It is found that because the dense core phenomenon is considered in the model, the stress of the rock under the cutter ring bottom is significantly greater than the uniaxial compressive strength, which is more in line with the engineering practice. Finally, two kinds of rock samples with different particle sizes are selected, four kinds of indenters are prepared, and the verification experiment of the theoretical model is carried out using the TRW-3000 rock breaking tester. The results show that both the cutter width and the penetration depth are sensitive factors for vertical force and dimensionless average contact stress. Because the dense core phenomenon is included in the assessment, the rock stress level at the cutter bottom is obviously greater than the uniaxial compressive strength under the intrusion of indenter. The maximum prediction error of the proposed model is less than 10%, which shows that it has good accuracy.
  • 20世纪70年代以来,中国高土石坝建设技术取得了长足进步,建成了一批高土石坝工程,为提升流域防洪能力、保障供水安全、开发利用水能资源发挥了重要作用。然而,已建成的不少高土石坝出现了坝体裂缝、面板脱空、止水破坏、渗流量过大等病害,危及大坝安全。调查研究表明,高土石坝出现上述病害,除了坝高增加使其变形和渗流安全控制难度增大这一客观因素外,最主要的是高土石坝变形破坏相关基础理论研究落后于工程建设实践的问题长期未得到很好解决,导致其变形破坏机理认识不清,变形破坏过程预测预报不准,影响了变形和渗流安全控制措施的针对性和有效性。随着国家水网重大工程的推进,一批高土石坝工程正在或即将开工建设,如新疆大石峡面板砂砾石坝最大坝高247 m,西藏RM心墙堆石坝最大坝高315 m,坝高均居同类坝型世界之首;雅鲁藏布江下游的ML水电站坝基覆盖层深度超过500 m,这些高坝大库建设条件和运行环境更为复杂,面临的安全挑战将更为严峻,亟需在复杂条件下高土石坝变形破坏机理、变形破坏过程计算理论、变形破坏防控技术上取得突破。“十三五”国家重点研发计划项目“复杂条件下特高土石坝建设与长期安全保障关键技术”聚焦“大幅提升高土石坝变形破坏过程预测预报精度,增强高土石坝变形和渗流安全控制措施的针对性和有效性,为避免或降低其病害风险提供理论和技术支撑”这一目标,在坝体和坝基材料本构理论、复杂接触问题非连续变形计算方法、多相多场耦合计算方法、超大规模数值模拟技术、变形破坏防控技术等方面开展了深入系统研究,取得了系列创新成果。

    高土石坝主要由粗粒土碾压填筑而成,其力学性质及其演化规律对高土石坝安全具有重要影响。目前常用粗粒土本构模型尚不能合理反映高应力与变化环境下粗粒土颗粒破碎对高土石坝变形的影响机制,导致其低估高土石坝沉降和指向坝体内的水平位移,高估指向坝体外的水平位移,造成应对措施不当,增大了高土石坝发生病害的风险。围绕上述问题,重点针对粗粒土的颗粒破碎规律和劣化流变规律及其本构模拟等开展了研究工作。

    (1)粗粒土的峰值与临胀摩擦角

    分析300余种粗粒土的大型三轴试验结果发现:颗粒破碎使粗粒土峰值摩擦角和临胀摩擦角均随围压或平均有效应力的增加而非线性降低,两者之间服从对数线性变化规律[1-2],即

    ϕ=ϕ0Δϕlg(ppa) ψ=ψ0Δψlg(ppa) }
    (1)

    式中pa为标准大气压,pa=101.325 kPaφ0ψ0分别为平均应力p=pa时的峰值摩擦角和临胀摩擦角;ΔφΔψ分别为平均应力p增加一个数量级时峰值摩擦角和剪胀摩擦角降低的幅度。

    (2)加载与流变的流动准则

    通过粗粒土大型三轴压缩试验和三轴流变试验[3],分别研究了加载和流变过程中剪胀比与应力比之间的关系,发现在三轴压缩和三轴流变过程中,粗粒土的剪胀比均随着应力比的增加而减小,且相同三轴压缩应力状态下,粗粒土的流变剪胀比明显大于加载剪胀比,即流变过程中粗粒土的剪缩性比三轴压缩过程中的剪缩性更为强烈,粗粒土的流变全部表现为体积收缩,加载变形和流变变形服从不同流动准则(图 1)。

    dL=d0[1(ηMd)4] dC=M2dη22η }
    (2)
    图  1  粗粒土加载与流变过程中剪胀比与应力比的关系[3]
    Figure  1.  Relationships between dilatancy ratio and stress ratio during loading and creeping[3]

    式中dL为加载剪胀比;d0为初始剪胀比;Md加载临胀应力比;dC为流变剪胀比;Md为流变临胀应力比,一般情况下Md(1.1~1.3)Md

    (3)统一模拟加载变形与流变的粗粒土本构模型

    提出了“一个屈服面,两个流动准则”的建模新思路,在屈服方程中引入时间变量,通过时间变化引起屈服面扩张,解决流变的启动机制问题;分别采用不同的流动准则描述加载塑性应变方向和流变塑性应变方向,建立了统一模拟粗粒土加载变形与流变的本构方程的一般形式[4],即

    dσ=[De(De:GLσ)(Fσ:De)Fσ:De:GLσFhhεp:GLσ]:(dεdλCGCσ)
    (3)

    式中σ为应力张量;ε为应变张量;DeCe分别为弹性劲度张量和柔度张量;GLGC为描述加载变形与流变的塑性势函数;h为硬化参数,是塑性应变εp的函数;t为时间。

    基于三轴剪切和流变试验以及原位变形观测资料,构建了加载塑性模量(HL)、流变塑性模量(HC)等表达式,实现了粗粒土加载变形与流变的统一模拟(图 2),克服了目前常用本构模型未能合理反映粗粒土颗粒破碎对高土石坝变形的影响机制和无法考虑高土石坝施工期流变的不足。

    图  2  某特高心墙堆石坝填筑施工过程模拟[4]
    Figure  2.  Deformation behaviors of a high rockfill dam by proposed model[4]

    随着中国水利水电开发进程的持续推进,地形地质条件优良的基岩坝址日益减少,深厚覆盖层上建设土石坝和闸坝工程已成为这些地区水利水电开发难以规避的重大技术挑战。坝基深厚覆盖层由于经历了漫长的沉积历史,具有明显的结构性特点,但实践中往往忽视覆盖层土体的原位结构性,套用堆石料等重塑散粒体材料的模型和计算方法,得出的结论具有很大的不确定性,亟需发展适用于原位覆盖层土体的本构理论和计算方法,科学认识坝基深厚覆盖层材料的力学特性和结构损伤演化规律,为深厚覆盖层上高土石坝设计和地基处理提供科学依据。

    (1)原位胶结覆盖层的特征孔隙比

    通过分析某无扰动土体和扰动土体的单向压缩试验结果和人工胶结砂砾石料的三轴压缩试验结果,揭示了原位胶结结构对深厚覆盖层粗粒土强度特性和剪胀(缩)规律的影响,提出了粒间胶结使粗粒土孔隙处于锁定状态(图 3),胶结结构损伤使“锁定孔隙”逐步释放的原创思路;通过引入胶结破坏比参量rd=Nd/NdNiNi,构建了胶结覆盖层粗粒土特征孔隙比随平均应力变化和胶结结构损伤的演化方程[5]

    图  3  覆盖层胶结结构示意图[5]
    Figure  3.  Schematic illustration of locked voids[5]
    ei=ei0exp[(3phs)n]+Δe(rd) ed=ed0exp[(3phs)n]+Δe(rd) ec=ec0exp[(3phs)n]+Δe(rd) }
    (4)

    式中eiedec分别为最大最小和临界孔隙比;Δe为附加孔隙比,取决于胶结破坏比rdrd = 0时,Δe = Δe0rd = 1时,Δe = 0。

    由于引入了独立的胶结破坏比变量rd,颗粒材料在(p, ec)平面上的临界状态线扩展成为(p, rd, ec)空间的临界状态面(图 4)。在加载过程中,胶结结构性土的临界状态沿着胶结破坏比rd增长的方向演化,如图 4中的粗虚线所示。

    图  4  胶结覆盖层临界状态面示意图[5]
    Figure  4.  Critical state surface plotted in ec~ln(p)~rd space for cemented granular materials[5]

    (2)胶结覆盖层结构性土本构模型

    基于亚塑性理论,提出了考虑坝基深厚覆盖层原位结构及其损伤演化规律的亚塑性本构模型(式5)[5],实现了覆盖层结构性土由胶结体向散粒体过渡的模拟,提升了高土石坝坝基覆盖层变形预测精度。

    oσ=fs[a2˙ε+(ˉσ:˙ε)ˉσafv(1fdˉσ+fdˉσ)˙ε]
    (5)

    式中oσ为客观应力率张量;ˉσ为单位化应力张量,ˉσ为其偏斜分量,即ˉσ=σ/tr(σ)ˉσ=ˉσI/3;标量fs称为劲度因子;标量fv称为孔隙比因子;标量fd称为损伤因子;标量a是与一个与临界状态摩擦角φc相关的变量。本构方程中各因子表达式详见文献[5]。

    高土石坝存在坝体与河谷、心墙与坝壳混凝土面板与垫层、坝基覆盖层与防渗墙等接触问题,这些接触界面变形破坏机制复杂,是高土石坝常出现病害的部位,有必要研究提出正确反映其变形破坏机理的模拟计算方法。当前针对土–结构接触特性的研究,多采用接触单元法,该方法对于材料界面上位移不连续现象的描述较为简单,导致接触面大规模滑移和脱开等问题的计算结果发生震荡、不易收敛等。为此,基于非线性接触力学的模拟方法,本项目破解了高土石坝多体接触特性描述、非协调网格处理、接触界面流固耦合模拟等难题,建立了模拟高土石坝不同材料界面复杂接触问题的非线性数值计算方法,实现了高土石坝各类接触界面变形破坏过程的精准模拟。

    (1)高土石坝多体接触数值算法

    基于面对面的接触界面离散形式,发展了基于非线性接触力学的数值算法,并自主编制了三维有限元计算程序系统,可用于进行土石坝多体接触问题应力变形的分析计算。计算接触力学方法在有限元框架内处理接触问题,将相互接触的不同物体处理为独立的变形体,分别划分有限元计算网格,建立有限元方程,然后通过引入接触物体之间的接触条件,集成整体的有限元方程进行求解。计算接触力学所涉及的内容较多,可将其归纳为接触条件和多体接触问题的变分原理(式6)、接触界面的空间离散(式7)和接触问题的非线性迭代求解方法(式8)等内容[6-7]

    δΠC=ΓCλ(δusδum)dΓΓCgn(δλnλn)dΓ0ΓCvτ(δλτλτ)dΓ0
    (6)
    δΠCuΓC[nsj=1ψjzj(nsk=1Nkδusknml=1Nlδuml)]dΓ=(δus)TDz(δum)TMTz
    (7)

    (8)

    式中K为不考虑接触的传统有限元方法计算格式刚度矩阵;下标N、M、I和A分别表示各类接触状态的节点集合;Δu为位移增量;Fext, int为内外力荷载;用*表示的矩阵子块具体形式和节点的接触状态有关,需根据物体处于黏结状态或滑移状态选用对应的约束条件。

    (2)高土石坝多体接触问题流固耦合计算方法

    基于计算接触力学理论,通过Lagrange乘子法引入接触界面孔压连续条件,构造了将高土石坝各类接触面不可贯入条件、法向压力条件和切向摩擦力条件的不等式约束转换为等式约束的势能泛函(式9),建立了流固耦合接触问题的变分方程(式10);开发了适合大规模计算的隐式多体接触算法和基于对偶Mortar元的高精度界面离散形式(式11);基于接触力学和虚拟单元法(图 5),引入接触界面孔压传导条件(图 6),创建了高土石坝多体接触问题流固耦合计算方法,克服了传统接触单元出现震荡型法向应力以及无法考虑接触部位流固耦合等不足,实现了高土石坝各类接触问题变形破坏过程的精准模拟[7]

    Π*(u,p)=Πint , ext(u,p) + ΠuCs(u,λu)+ΠpCf(p,λp)
    (9)
    图  5  接触力学和虚拟单元法示意图
    Figure  5.  Schematic illustration of contact mechanics and virtual- element method
    图  6  流固耦合接触问题孔压传导模型示意图
    Figure  6.  Schematic illustration of pore pressure transmission model

    式中,Π*为修正后的泛函,ΠuCs为接触界面上应力位移接触条件的附加泛函,ΠpCf为接触界面上渗流接触条件的附加泛函,λuλp分别为对应的Lagrange乘子。

    δΠ*=δint,ext+δΠCs+δΠCf=tΓsCgn(δλnuλnu)dΓtΓsC¯vτ(δλτuλτu)dΓtΓsC¯vτ(δλτuλτu)dΓ}
    (10)

    式中δΠ*为修正泛函的变分;δΠCsδΠCf分别为接触界面上应力位移附加泛函的变分和接触界面上渗流附加泛函的变分。

    λnsj=1ϕjzj,ϕj=nsek=1ae,jkNk
    (11)

    式中ϕj为从面节点上的Lagrange乘子的形函数,也称对偶基函数;zj为从面节点的Lagrange乘子;ae, jk为待定系数矩阵,可根据dual mortar元应满足的双正交条件确定。

    高土石坝坝体裂缝是目前高土石坝建设及运行中常遇到的病险,其发生和发展大大增加了工程的安全风险。通过对某心墙堆石坝典型监测点监测数据进行反演计算,深入分析了坝体和坝顶裂缝的产生原因及演化过程,揭示了高土石坝坝体裂缝尖端应力集中和扩展过程应力重分布特征,提出了土体张拉–剪切联合破坏准则(式12)以及区域控制法判定裂缝扩展方向的方法,建立了基于径向基点插值无网格法、扩展有限元与传统有限元直接耦合的高土石坝三维裂缝萌生–扩展过程的数值计算方法,实现了高土石坝坝体三维裂缝萌生扩展全过程的精准模拟和自动追踪(图 7[8]

    TL=|σ3ft|(σ3<0)SL=σ1σ3sinφ(σ1+σ3+2c/tanφ)
    (12)
    图  7  高土石坝坝顶裂缝模拟方法与案例[8]
    Figure  7.  Modeling of crest crack in a high rockfill dam[8]

    计算过程中,若目标区域的TL>1σ3<0,则该区域处于张拉破坏状态;若目标区域的SL>0,则该区域处于剪切破坏状态。

    高土石坝在填筑、蓄水和运行过程中常涉及非饱和土问题。通过定义土体孔隙含气率和孔隙气排气率,导出了非饱和土固结过程孔隙气压力演化方程,构建了实用的非饱和土固结理论;提出了考虑黏土心墙应力应变状态的指数型渗透系数模型(图 8),以及模拟土质防渗体吸水过程和失水过程土水特征曲线的边界面模型(图 9),实现了土质防渗心墙由非饱和状态向饱和状态循环演化、应力应变与渗流固结过程完全耦合的精细模拟,大幅提升了高心墙坝填筑和运行期黏性心墙孔隙水压力发展和分布规律计算精度。

    图  8  黏土心墙指数型渗透系数模型
    Figure  8.  Exponential permeability model for clay core
    图  9  非饱和黏土土水特征曲线模型
    Figure  9.  Soil-water characteristic curves for unsaturated soils

    在面板堆石坝工程中,混凝土面板是大坝防渗的主体结构。基于计算接触力学方法,嵌入了钢筋混凝土弹塑性本构模型,发展了大变形和大刚度差异条件下面板结构应力、脱空和破环现象的模拟计算方法。基于已建工程中面板发生挤压破损现象的分析,阐明了高面板坝面板挤压破损机理和特征;基于对偶mortar元提出了非稳定温度场计算方法(式13)和热–力耦合计算方法(式14),结合提出的面板局部计算网格加密技术(图 10),建立了高面板坝面板太阳热辐射温度应力场和结构破损过程模拟计算方法,对200 m级理想面板堆石坝运行期太阳热辐射温度应力进行计算分析(图 11),精准再现了面板在轴向挤压变形和温度应力共同作用下的破损现象[9-11]

    [HRR˜HRM˜HTRM˜HMM]{θRθM}={QRQM+GTQS}
    (13)
    σσεΔε+σhis Δε=εuΔuαθΔθI3×3 }
    (14)
    图  10  面板局部计算网格加密示意图
    Figure  10.  Schematic illustration of mesh encryption for part of concrete face
    图  11  面板坝应力场–温度场耦合高精度分析方法特点
    Figure  11.  Coupling analysis of temperature and stress fields for concrete-faced dam

    大型高土石坝工程规模宏大,结构形式复杂,运行环境多变。为了保证工程的安全性,需要对坝体结构的性态进行各种工况条件下的应力变形有限元计算,评价工程的安全性。针对材料强非线性、复杂接触界面模拟、多场耦合计算等对超大规模科学计算的需求,突破大型劣态稀疏线性方程组高效迭代算法、大型非线性系统快速求解方法等关键算法瓶颈,集成上述本构理论和计算方法,自主研发了适用于高土石坝填筑、蓄水、运行等全过程模拟的高性能软件平台,计算规模突破1亿自由度,计算精度和效率大幅提升(表 1),实现了高土石坝变形破坏过程计算理论和方法从知识到技术的跨越。

    表  1  西藏RM水电站心墙堆石坝超大规模计算耗时统计
    Table  1.  Spent time of calculation for core-wall rockfill dam of RM
    计算方案 单元数/104 节点数/104 自由度/104 单元尺寸/m 并行核心/核 计算耗时/h
    1 8.5 6.7 26.9 7.899 48 0.23
    2 67.7 51.6 206.4 3.950 192 1.06
    3 541.5 404.0 1615.9 1.975 1280 2.95
    4 4331.7 3196.8 12787.4 0.987 2400 19.14
    下载: 导出CSV 
    | 显示表格

    基于对高土石坝变形破坏机理的认识,研发了特高面板坝新型坝体结构和陡峻岸坡面板台阶型趾板、特高心墙坝岸坡和心墙接触部位采用高塑性黏土层的变形协调和防渗技术、高面板坝面板脱空报警和自动应急保护技术、面板材料和新型止水、土石坝抗冰冻技术等多种高土石坝变形破坏防控技术措施。

    (1)特高面板坝新型坝体结构和陡峻岸坡台阶型趾板技术。针对大石峡面板砂砾石坝工程,提出了一种新型坝体结构形式(混凝土重力坝和面板砂砾石坝复式结构)[12-13],如图 12所示,并对其安全性进行了全面论证。该复合式坝体结构具有减小面板长度,改善其应力应变条件,明显减小面板周边缝变位,提升高面板坝安全性的优点。研发了在面板坝陡峻岸坡部位采用台阶型趾板技术,如图 13所示,模型试验和计算分析表明,该技术不仅可大幅减小面板周边缝变形、改善趾板与面板连接部位的应力状态,还便利了面板起始板的滑膜施工。

    图  12  混凝土重力坝-面板砂砾石坝复式结构示意图
    Figure  12.  Schematic illustration of a compound structure of concrete gravity dam and concrete face sand-gravel dam
    图  13  台阶式趾板结构示意图
    Figure  13.  Schematic illustration of stepwise toe plinth

    (2)特高心墙坝岸坡和心墙接触部位采用高塑性黏土层的变形协调和防渗技术。针对RM特高心墙堆石坝工程,开展了不同工况下岸坡–高塑性黏土层–掺砾心墙相互作用机制的大型离心模型试验,重点研究了高塑性黏土层的变形和防渗性能演化规律。试验结果表明,静动力荷载作用下,厚度3~4 m的高塑性黏土层始终处于“压剪”状态,防渗性能几乎没有发生变化,岸坡–高塑性黏土层–掺砾心墙三者之间变形协调。证实了在特高心墙坝岸坡和心墙接触部位采用3~4 m厚度的高塑性黏土层,是一种有效的变形协调和防渗措施。

    (3)高面板坝面板脱空报警和自动应急保护技术。针对面板堆石坝由于堆石料流变或遭受地震时,坝体断面将发生收缩,导致面板脱空问题,研发了一种混凝土面板堆石坝面板脱空的气囊式自动保护装置(图 14)。该装置在面板与垫层料之间发生脱空,且脱空量达到危害混凝土面板安全的量值时,能自动报警并启动气囊式保护装置,充气气囊将临时支撑面板,防止面板因脱空而受力状态恶化,造成面板及其止水结构发生破坏。显然,该装置不仅能及时发现面板脱空险情,也为面板脱空险情处置赢得了时间,从而有效防止面板及其止水结构破坏的发生。

    图  14  充气气囊保护混凝土面板的基本工作原理
    Figure  14.  Operation principle of inflatable air bag to protect concrete face

    (4)高面板坝防渗面板与新型止水。研发了面板下部迎水面设置辅助防渗层技术,即利用SK单组分聚脲涂层作为面板下部的辅助防渗层。通过室内试验,深入研究了SK单组分聚脲的物理力学特性,提出了满足防渗要求的主要技术指标,并建立了施工工艺和质控方法(图 15)。研发了适用于严寒地区的集锚固密封为一体的面板接缝表层平覆型柔性止水结构,通过小样试验模型试验,确定了合适的肋槽方案以及锚固封边剂。

    图  15  面板接缝表层平覆型柔性止水结构
    Figure  15.  Flexible waterstop on surface of slab joint

    本文扼要介绍了“十三五”国家重点研发计划项目“复杂条件下特高土石坝建设与长期安全保障关键技术”的主要成果,特别是笔者研究团队近年来在高土石坝变形破坏过程计算理论与方法等方面的研究成果,总结如下。

    (1)揭示了粗粒土颗粒破碎对高土石坝变形的影响机制,提出了“一个屈服面,两个流动准则”的建模新思路,建立了统一模拟加载变形与流变的粗粒土本构模型,克服了目前常用本构模型未能合理反映粗粒土颗粒破碎对高土石坝变形的影响机制和无法考虑高土石坝施工期流变的不足,大幅提升了高土石坝变形及其发展分布规律预测精度。

    (2)揭示了坝基深厚覆盖层原位结构损伤演化规律,基于亚塑性理论,提出了考虑坝基深厚覆盖层原位结构及其损伤演化规律的亚塑性本构模型,实现了覆盖层结构性土由胶结体向散粒体过渡的模拟,提升了高土石坝坝基覆盖层变形预测精度。

    (3)破解了高土石坝多体接触强非线性特性描述、非协调网格处理、接触界面流固耦合模拟等难题,建立了模拟高土石坝不同材料界面复杂接触问题的非线性数值计算方法;破解了高土石坝裂缝萌生条件判别、裂缝扩展方向和扩展过程追踪等难题,建立了模拟高土石坝三维复杂裂缝萌生—扩展全过程的数值计算方法。首次实现了高土石坝各类接触界面变形破坏过程以及坝体裂缝萌生扩展过程的精细模拟。

    (4)提出了黏土心墙渗透特性与应力变形状态耦合的数学模型,以及模拟心墙干湿循环过程的土水特征曲线模型,发展了实用的非饱和土固结理论,实现了高心墙坝全生命期变形与渗流耦合过程的精细模拟;建立了高面板坝面板太阳热辐射温度应力场和结构破损过程模拟计算方法,揭示了面板在轴向挤压变形和温度应力共同作用下的破损机理。

    (5)突破大型劣态稀疏线性方程组高效迭代算法、大型非线性系统快速求解方法等关键算法瓶颈,自主研发了适用于高土石坝填筑、蓄水、运行等全过程模拟的高性能软件平台,计算规模突破1亿自由度,计算精度和效率大幅提升,实现了理论和方法从知识到技术的跨越。

    (6)研发了特高面板坝新型坝体结构和陡峻岸坡面板台阶型趾板、特高心墙坝岸坡和心墙接触部位采用高塑性黏土层的变形协调和防渗技术、高面板坝面板脱空报警和自动应急保护技术、适用于严寒地区的集锚固密封为一体的面板接缝表层平覆型柔性止水结构,为高土石坝变形破坏防控提供了先进手段。

    上述研究成果已成功应用于新疆阿尔塔什面板砂砾石坝、大石峡面板砂砾石坝、西藏RM心墙堆石坝等一批标志性高土石坝工程,为坝型比选、坝料选择、坝体结构设计优化等提供了重要的科学技术支撑,取得了显著的经济社会效益,推广应用前景广阔。

  • 图  1   滚刀离散化及滚刀微元的定义

    Figure  1.   Discretization of cutter and definition of cutter element

    图  2   给定剖切角βi时滚刀微元侵岩理论模型示意图

    Figure  2.   Schematic diagram of theoretical model for rock penetration of cutter element under given cutting angleβi

    图  3   侵岩过程中刀岩体积协调关系示意图

    Figure  3.   Schematic diagram of cutter-rock volume coordination during rock penetration

    图  4   滚刀及其微元受力分析示意图

    Figure  4.   Schematic diagram of force analysis of cutter and cutter element

    图  5   无因次平均接触应力随侵深的变化曲线

    Figure  5.   Variation of dimensionless average contact stresses with penetration depths

    图  6   TRW-3000三轴冲击破岩试验平台

    Figure  6.   TRW-3000 rock-breaking test machine

    图  7   试验所用柱形花岗岩截面图

    Figure  7.   Sections of columnar granite used in tests

    图  8   岩样脆断面的密实核形态图

    Figure  8.   Dense core morphology of brittle section of rock sample

    图  9   0.5 MPa围压下各压头的实测、理论曲线

    Figure  9.   Measured and theoretical curves of each indenter under confining pressure of 0.5 MPa

    表  1   L12(211)正交试验方案表

    Table  1   List of L12(211) orthogonal level

    水平 侵深A/mm 刀刃宽B/mm 刀刃角C/(°) 过渡圆弧半径D/mm 滚刀半径E/mm 内摩擦角F/(°) 剪胀角G/(°) 抗压强度H/MPa 抗拉强度I/MPa 剪切强度J/MPa
    1 1.0 4.5 5 2.3 108 45 15 97 7.2 15
    2 1.6 8.5 10 6.9 216 55 25 137 8.2 25
    下载: 导出CSV

    表  2   极差分析表(垂直力Fv)

    Table  2   Range analysis table (normal forceFv)

    项目 A B C D E F G H I J 空列
    K1 496.59 609.07 676.11 657.22 547.92 697.65 602.71 631.23 650.54 661.67 673.91
    K2 824.04 711.56 644.51 663.40 772.70 622.97 717.91 870.77 670.09 658.96 646.71
    k1 82.76 101.51 112.69 109.54 91.32 116.27 100.45 105.21 108.42 110.28 112.32
    k2 137.34 118.59 107.42 110.57 128.78 103.83 119.65 145.13 111.68 109.83 107.79
    Rj 327.45 102.49 31.60 6.18 224.78 74.68 115.20 58.16 19.55 2.71 27.20
    注:AEGBFHCIDJ
    下载: 导出CSV

    表  3   极差分析表(无因次接触应力σm)

    Table  3   Range analysis table (dimensionless contact stressσm)

    项目 A B C D E F G H I J 空列
    K1 7.82 10.36 8.89 9.59 8.88 9.23 8.06 9.96 9.32 9.17 8.97
    K2 10.27 7.74 9.2 8.50 9.22 8.87 10.04 9.99 8.78 8.93 9.13
    k1 1.30 1.73 1.48 1.60 1.48 1.54 1.34 1.66 1.55 1.53 1.49
    k2 1.71 1.29 1.54 1.42 1.54 1.48 1.67 1.66 1.46 1.49 1.52
    Rj 2.45 2.62 0.33 1.09 0.34 0.35 1.98 1.83 0.53 0.24 0.16
    注:BAGHDIFECJ
    下载: 导出CSV

    表  4   滚刀压头截面尺寸参数表

    Table  4   Cross-sectional size parameters of indenters

    编号 2a0/mm 2θ0/(°) r0/mm r/mm
    C1 6.5 20 1.75 108
    C2 11.3 13 2.80 216
    C3 11.7 18 5.70 216
    C4 13.0 20 3.50 216
    下载: 导出CSV

    表  5   0.5 MPa围压下岩石试样物理力学性能参数表

    Table  5   Mechanical property parameters of rock samples under 0.5 MPa confining pressure

    编号 弹性模量/GPa 泊松比 抗压强度/MPa 抗拉强度/MPa 黏聚力/MPa 内摩擦角/(°) 剪胀角/(°)
    R1 41.94 0.18 136.81 8.19 22.25 52.73 20.08
    R2 41.74 0.15 97.43 7.25 16.59 54.12 21.75
    下载: 导出CSV

    表  6   侵岩载荷曲线斜率的误差分析

    Table  6   Slope error analysis of cutting load curves

    组号 实测值
    /(kN·mm-1)
    理论值
    /(kN·mm-1)
    相对误差
    /%
    C1-R1 126.6 119 6
    C2-R1 212.6 200 6
    C3-R1 257.4 239 7
    C4-R1 231.3 219 5
    C1-R2 115.1 107 7
    C2-R2 215.3 201 7
    C3-R2 197.2 192 3
    C4-R2 214.9 203 6
    下载: 导出CSV
  • [1] 徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.

    XU Xiao-he, YU Jing. Rock Fragmentation[M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese)

    [2]

    EVANS I, POMEROY C D. The Strength, Fracture and Workability of Coal[M]. London: Pergamon Press, 1966.

    [3]

    ROXBOROUGH F F, PHILLIPS H R. Rock excavation by disc cutter[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, , 1975, 12(12): 361–366.

    [4]

    ROSTAMI J. Design Optimization, Performance Predictions, and Economic Analysis of TBM Application in the Proposed Yucca Mountain Nuclear Waste Repository[D]. Golden: Colorado School of Mines, 1991.

    [5]

    ROSTAMI J. Development of a Force Estimation Model for Rock Fragmentation With Disc Cutters Through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure [D]. Golden: Colorado School of Mines, 1997.

    [6] 孙鸿范, 陈健元, 陈刚. 掘进机盘形滚刀破岩力及计算载荷的研究[J]. 工程机械, 1980, 8: 1–7. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA198008000.htm

    SUN Hong-fan, CHEN Jian-yuan, CHEN Gang. Research on rock-breaking force and calculated load of disc cutter of cutterhead[J]. Construction Machinery and Equipment, 1980, 8: 1–7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA198008000.htm

    [7] 余静. 岩石机械破碎规律和破岩机理模型[J]. 煤炭学报, 1982, 3: 10–18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198203001.htm

    YU Jing. Rules of rock fragmentation with mechanical methods and model of rock failure mechanism[J]. Journal of China Coal Society, 1982, 3: 10–18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198203001.htm

    [8]

    XIA Y M, TAO O Y, ZHANG X M, et al. Mechanical model of breaking rock and force characteristic of disc cutter[J]. Journal of Central South University, 2012, 19(7): 1846-1852. doi: 10.1007/s11771-012-1218-8

    [9] 刘泉声, 刘建平, 时凯, 等. 评价岩石脆性指标对滚刀破岩效率的影响[J]. 岩石力学与工程学报, 2016, 35(3): 498–510. doi: 10.13722/j.cnki.jrme.2015.0569

    LIU Quan-sheng, LIU Jian-ping, SHI Kai, et al. Evaluation of rock brittleness indexes on rock fragmentation efficiency by disc cutter[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 498–510. (in Chinese) doi: 10.13722/j.cnki.jrme.2015.0569

    [10] 夏毅敏, 罗德志, 周喜温. 盾构地质适应性配刀规律研究[J]. 煤炭学报, 2011, 36(7): 1232-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107035.htm

    XIA Yi-min, LUO De-zhi, ZHOU Xi-wen. Study on the law of geology adaptability cutter selection for shield[J]. Journal of China Coal Society, 2011, 36(7): 1232-1236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107035.htm

    [11]

    ZHAO J, GONG Q M, EISENSTEN Z. Tunnelling through a frequently changing and mixed ground: a case history in Singapore[J]. Tunnelling and Underground Space Technology, 2007, 22(4): 388–400. doi: 10.1016/j.tust.2006.10.002

    [12]

    SANIO H P. Prediction of the performance of disc cutters in anisotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3): 153–161.

    [13]

    ALEHOSSEIN H, DETOURNAY E, HUANG H. An analytical model for the indentation of rocks by blunt tools[J]. Rock Mechanics and Rock Engineering, 2000, 33(4): 267–284.

    [14] 张晓平, 王思敬, 韩庚友, 等. 岩石单轴压缩条件下裂纹扩展试验研究: 以片状岩石为例[J]. 岩石力学与工程学报, 2011, 30(9): 1772–1781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109008.htm

    ZHANG Xiao-ping, WANG Si-jing, HAN Geng-you, et al. Crack propagation study of rock based on uniaxial compressive test—a case study of schistose rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1772–1781. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109008.htm

    [15]

    LIU J, CAO P. Study on rock fracture with TBM cutter under different confining stresses[J]. Indian Geotechnical Journal, 2016, 46(1): 104–114.

    [16]

    LIU J, CAO P, HAN D Y. Sequential indentation tests to investigate the influence of confining stress on rock breakage by tunnel boring machine cutter in a biaxial state[J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1479–1495.

    [17]

    LIU Q, LIU Q S, PAN Y C, et al. Experimental study on rock indentation using infrared thermography and acoustic emission techniques[J]. Journal of Geophysics and Engineering, 2018, 15(5): 1864–1877.

    [18] 李克金, 李文, 张德文, 等. 基于空腔膨胀理论的TBM滚刀破岩模型研究[J]. 武汉大学学报(工学版), 2020, 53(7): 583–590. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202007003.htm

    LI Ke-jin, LI Wen, ZHANG De-wen, et al. Study on rock breakage model of TBM disc cutter based on cavity expansion theory[J]. Engineering Journal of Wuhan University, 2020, 53(7): 583–590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202007003.htm

    [19] 孙伟, 张旭, 赵奎山. 基于密实核理论的单滚刀多阶段受力预测模型[J]. 机械设计与制造, 2015(6): 9–12. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201506004.htm

    SUN Wei, ZHANG Xu, ZHAO Kui-shan. Multi-stage force prediction model of single disc cutter based on the dense nuclear theory[J]. Machinery Design & Manufacture, 2015(6): 9–12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201506004.htm

    [20]

    HUO J Z, WANG W Z, SUN W, et al. The multi-stage rock fragmentation load prediction model of tunnel boring machine cutter group based on dense core theory[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/2/3/4): 277–289.

    [21] 孙剑萍, 胡瑜涛, 汤兆平, 等. 基于正交试验法的盾构机盘形滚刀磨损影响因素研究[J]. 中国科技论文, 2018, 13(10): 1158–1163. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201810012.htm

    SUN Jian-ping, HU Yu-tao, TANG Zhao-ping, et al. Influences on wear of disc cutter in the shield machine based on orthogonal test method[J]. China Sciencepaper, 2018, 13(10): 1158–1163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201810012.htm

    [22] 林赉贶, 夏毅敏, 贾连辉, 等. 安装参数与掘进参数对滚刀破岩阻力的影响[J]. 浙江大学学报(工学版), 2018, 52(6): 1209–1215. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201806021.htm

    LIN Lai-kuang, XIA Yi-min, JIA Lian-hui, et al. Influence of installation and tunnelling parameters on rock-breaking resistance of disc cutter[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1209–1215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201806021.htm

    [23] 俞茂宏, 昝月稳, 范文, 等. 20世纪岩石强度理论的发展: 纪念Mohr-Coulomb强度理论100周年[J]. 岩石力学与工程学报, 2000, 19(5): 545–550. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200005000.htm

    YU Mao-hong, ZAN Yue-wen, FAN Wen, et al. Advances in strength theory of rock in 20 century—100 years in memory of the Mohr- coulomb strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 545–550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200005000.htm

    [24] 谭青, 易念恩, 夏毅敏, 等. TBM滚刀破岩动态特性与最优刀间距研究[J]. 岩石力学与工程学报, 2012, 31(12): 2453–2464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212010.htm

    TAN Qing, YI Nian-en, XIA Yi-min, et al. Research on rock dynamic fragmentation characteristics by TBM cutters and cutter spacing optimization[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2453–2464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212010.htm

    [25]

    YIN L J, GONG Q M, MA H S, et al. Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 261–276.

  • 期刊类型引用(7)

    1. 向成兵. 基于数值模拟的碾压混凝土重力坝坝体开裂原因研究. 水利科技与经济. 2025(01): 64-70 . 百度学术
    2. 张春顺,林正鸿,杨典森,陈嘉瑞. 考虑初始级配影响的粗粒土非线性弹性模型研究. 岩土力学. 2025(03): 750-760 . 百度学术
    3. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 . 百度学术
    4. 庞元恩,石国栋,段煜,姚敏,吉浩泽,罗鸣,李茂彪,李旭. 基于搜索分析深度学习网络(SaNet)的粗粒土级配识别. 岩土工程学报. 2024(09): 1984-1993 . 本站查看
    5. 卢斌,郑雪玉,吴修锋,谢兴华,李艳伟,王照英. 特高堆石坝砾石土心墙非均质缺陷对渗流场影响分析. 水电与抽水蓄能. 2023(03): 22-25+39 . 百度学术
    6. 熊治茗,杜俊,杨志全,沈兴刚. 筑坝堆石料三轴剪切特性及变形破坏试验研究. 水利与建筑工程学报. 2023(06): 107-113 . 百度学术
    7. 王明昌. 高砾石土心墙堆石坝过渡料爆破直采技术分析. 新型工业化. 2022(11): 132-135 . 百度学术

    其他类型引用(4)

图(9)  /  表(6)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  60
  • PDF下载量:  25
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-10-10
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-30

目录

/

返回文章
返回