• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

无源环境振动的有限元分析方法及在北京光源工程应用

顾晓强, 余宽原, 黄茂松, 刘鑫, 闫芳, 吴德顺

顾晓强, 余宽原, 黄茂松, 刘鑫, 闫芳, 吴德顺. 无源环境振动的有限元分析方法及在北京光源工程应用[J]. 岩土工程学报, 2022, 44(12): 2245-2252. DOI: 10.11779/CJGE202212011
引用本文: 顾晓强, 余宽原, 黄茂松, 刘鑫, 闫芳, 吴德顺. 无源环境振动的有限元分析方法及在北京光源工程应用[J]. 岩土工程学报, 2022, 44(12): 2245-2252. DOI: 10.11779/CJGE202212011
GU Xiao-qiang, YU Kuan-yuan, HUANG Mao-song, LIU Xin, YAN Fang, WU De-shun. Finite element method for analyzing environmental vibration without apparent sources and its application in Beijing High-Energy Photon Source[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2245-2252. DOI: 10.11779/CJGE202212011
Citation: GU Xiao-qiang, YU Kuan-yuan, HUANG Mao-song, LIU Xin, YAN Fang, WU De-shun. Finite element method for analyzing environmental vibration without apparent sources and its application in Beijing High-Energy Photon Source[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2245-2252. DOI: 10.11779/CJGE202212011

无源环境振动的有限元分析方法及在北京光源工程应用  English Version

基金项目: 

上海市教育发展基金会和上海市教育委员会“曙光计划”资助项目 20SG22

中央高校基本科研业务费专项资金资助项目 02002150144

详细信息
    作者简介:

    顾晓强(1981—),男,浙江桐乡人,博士,教授,主要从事土动力学与岩土地震工程等方面的研究

    通讯作者:

    黄茂松, E-mail: mshuang@tongji.edu.cn

  • 中图分类号: TU43

Finite element method for analyzing environmental vibration without apparent sources and its application in Beijing High-Energy Photon Source

  • 摘要: 无源环境微振动是指工程场地中没有明显振源时存在的微小振动,其可能导致高精密科学装置无法正常工作,如何准确分析无源条件下结构的环境微振动是此类工程亟需攻克的难题。系统介绍了一种无源环境条件下微振动的有限元分析方法。首先采用实测与理论方法得到地表任意点的振动时程,再利用传递矩阵法计算土层瑞利波弥散曲线及各频率振动沿深度衰减因子,再结合地表振动时程可计算出任意深度处的振动时程。将上述方法计算得到的每个节点的振动时程施加到有限元模型边界的相应节点上,使有限元模型的边界振动场与实际环境微振动场趋于一致。最终将该方法应用于国家“十三五”重大科技基础设施北京高能同步辐射光源工程(HEPS)地基基础的环境微振动分析,结果表明该方法能很好地反映无源振动的特性,为类似高精密科学装置的无源环境微振动分析提供了重要参考。
    Abstract: The environmental vibration without apparent sources refers to the vibration with very small amplitude in the field where there are no apparent excitation sources. It may significantly affect the normal operation of high-precision scientific apparatuses, and therefore appropriate methods are needed to analyze such environmental vibration precisely. A dynamic finite element method is introduced to analyze the environmental vibration without apparent sources in this study. Firstly, the time histories of vibration at the soil surface are obtained through the field measurements. Then, the transfer-matrix method is utilized to calculate the dispersion curve of the Rayleigh waves and the vibration attenuation factors with depth for each frequency. With the measured time histories on the ground and the attenuation factors, the time histories at different depths can be calculated. The calculated time history at each node is applied to the corresponding node on the finite element model boundary, which ensures the similarity of vibration conditions in the model and the reality. Finally, the proposed method is adopted to analyze the environmental vibration of the raft foundation of High-Energy Photon Source (HEPS). The results indicate that the proposed method can successfully capture the characteristics of vibration without apparent sources and provide useful reference for similar projects.
  • 图  1   无源振动分析模型示意图

    Figure  1.   Schematic diagram of analysis model for vibration without apparent sources

    图  2   地面振动确定方法的流程图

    Figure  2.   Flow chart for determining ground surface vibration

    图  3   计算某一深度处位移时程的流程图

    Figure  3.   Flow chart for calculating vibration at a certain depth

    图  4   北京光源效果图[15]

    Figure  4.   Schematic diagram of HEPS [15]

    图  5   北京光源工程有限元模型图

    Figure  5.   Finite element model for HEPS

    图  6   北京光源工程场地实测振动位移时程

    Figure  6.   Time histories of measured displacement at HEPS site

    图  7   北京光源分层地基瑞利波弥散曲线

    Figure  7.   Dispersion curve of Rayleigh waves at HEPS site

    图  8   北京光源地基各频率位移随深度衰减因子

    Figure  8.   Attenuation factors of Rayleigh waves at HEPS site

    图  9   各深度处的计算位移时程

    Figure  9.   Time histories of calculated displacement at different depths

    图  10   纯地基模型地表各节点位移振幅

    Figure  10.   Amplitudes of surface vibration displacement at different positions for model without structures

    图  11   北京光源工程场地和基础振动位移RMS值

    Figure  11.   RMS values of vibration of soil and foundation

    表  1   高精密科学装置对基础振动的控制标准[2, 8, 10]

    Table  1   Control criteria of vibration of foundation of high-precision scientific equipments [2, 8, 10]

    装置名称 1~100 Hz竖向振动位移均方根/nm
    上海光源 < 150(安静时段),< 300(嘈杂时段)
    软X射线自由电子激光 < 500
    硬X射线自由电子激光 < 150
    北京高能同步辐射光源 < 25
    注:安静时段系指0:00—4:00;嘈杂时段系指4:00—24:00。
    下载: 导出CSV

    表  2   北京光源工程地基土层分布及参数

    Table  2   Soil profile and parameters at HEPS site

    土层 厚度/m 密度
    /(kg·m-3)
    压缩波速/(m·s-1) 剪切波速/(m·s-1) 泊松比 弹性
    模量
    /MPa
    ①素填土 1 1910 636 173 0.460 166.9
    1卵石 11 2200 952 344 0.425 742.0
    2卵石 6 2200 1451 492 0.435 1528.4
    ④全风化基岩 8 2250 1962 777 0.407 3822.5
    ⑤强风化基岩 4 2350 2253 1011 0.374 6600.7
    ⑥中风化基岩 21 2590 3616 1547 0.388 17206.8
    ⑦微风化基岩 49 2680 4302 1936 0.373 27583.3
    下载: 导出CSV
  • [1] 夏禾. 交通环境振动工程[M]. 北京: 科学出版社, 2010.

    XIA He. Traffic Induced Environment Vibrations and Controls[M]. Beijing: Science Press, 2010. (in Chinese)

    [2] 余宽原. 考虑土体弹性各向异性的环境微振动分析研究[D]. 上海: 同济大学, 2021.

    YU Kuan-yuan. Analysis of Environmental Vibrations in Transverse Isotropic Elastic Ground[D]. Shanghai: Tongji University, 2021. (in Chinese)

    [3] 电子工业防微振工程技术规范: GB50176)—2015[S]. 北京: 中国计划出版社, 2015.

    Technical Code for Anti-Microvibration Engineering of Electronics Industry: GB50176—2015[S]. Beijing: China Planning Press, 2015. (in Chinese)

    [4]

    AMIRIKAS R, EHRLICHMANN H, BIALOWONS W, et al. Ground motion and comparison of various sites[R]. Hamburg: Deutsches Elektronen-Synchrotron, 2005.

    [5] 黄茂松. 上海光源工程微振动数值模拟计算研究报告[R]. 上海: 同济大学, 2005.

    HUANG Mao-song. Research Report on Numerical Simulations of Micro-vibration in Shanghai Synchrotron Radiation Facility (SSRF) [R]. Shanghai: Tongji University, 2005. (in Chinese)

    [6] 黄茂松, 任青, 周仁义, 等. 层状地基中瑞利波随深度的衰减特性[J]. 岩土力学, 2009, 30(1): 113-117, 122. doi: 10.3969/j.issn.1000-7598.2009.01.018

    HUANG Mao-song, REN Qing, ZHOU Ren-yi, et al. Attenuation characters of Rayleigh wave in layered soils[J]. Rock and Soil Mechanics, 2009, 30(1): 113-117, 122. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.01.018

    [7] 周仁义. 分层地基中环境微振动的衰减特性[D]. 上海: 同济大学, 2006.

    ZHOU Ren-yi. Attenuation of Environmental Vibration with Depth[D]. Shanghai: Tongji University, 2006. (in Chinese)

    [8] 冯忠俊. 上海自由电子激光工程地基振动测试研究及数值模拟[D]. 上海: 中国科学院上海应用物理研究所, 2009.

    FENG Zhong-jun. Ground Vibration Measurement and Numerical Simulation on Shanghai Free Electron Laser Project[D]. Shanghai: Shanghai Institute of Applied Physics, 2009. (in Chinese)

    [9] 岳建勇, 姚激, 周春, 等. 软土地区特殊精密装置基础微变形控制设计与实践[J]. 岩土工程学报, 2010, 32(增刊2): 267–270. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2066.htm

    YUE Jian-yong, YAO Ji, ZHOU Chun, et al. Design and practice of differential settlement control for soft foundation by using a special sensitive facility[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 267–270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2066.htm

    [10] 岳建勇. 软土地基精密装置基础微振动控制技术与工程应用[J]. 建筑科学, 2020, 36(增刊1): 57–67. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2020S1011.htm

    YUE Jian-yong. Technology of the micro-vibration control for the foundation of a special sensitive facility on soft ground with engineering applications[J]. Building Science, 2020, 36(S1): 57–67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2020S1011.htm

    [11]

    RICHART F E, HALL J R, WOODS R D. Vibrations of Soils and Foundations[M]. New Jersey: Prentice-Hall Inc., 1970.

    [12]

    YU K Y, GU X Q, HUANG M S, et al. Experimental, numerical and analytical studies on the attenuation of maglev train-induced vibrations with depth in layered soils[J]. Soil Dynamics and Earthquake Engineering, 2021, 143: 106628. doi: 10.1016/j.soildyn.2021.106628

    [13]

    THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2): 89–93. doi: 10.1063/1.1699629

    [14]

    HASKELL N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17–34. doi: 10.1785/BSSA0430010017

    [15] 北京市勘察设计研究院有限公司. 高能同步辐射光源项目岩土工程勘察报告[R]. 北京: 北京市勘察设计研究院有限公司, 2018.

    BGI Engineering Consultants Ltd. The Geotechnical Investigation Report of HEPS Project[R]. Beijing: BGI Engineering Consultants Ltd, 2018. (in Chinese)

    [16] 吴世明. 土介质中的波[M]. 北京: 科学出版社, 1997.

    WU Shi-ming. Wave Propagation in Soils[M]. Beijing: Science Press, 1997. (in Chinese)

    [17]

    ZERWER A, CASCANTE G, HUTCHINSON J. Parameter estimation in finite element simulations of Rayleigh waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 250–261. doi: 10.1061/(ASCE)1090-0241(2002)128:3(250)

    [18] 杨永斌. 高速列车所引致之土壤振动分析[R]. 台湾: 台湾大学, 1996.

    YANG Yong-bin. Analysis on Soil Vibration Induced by High-Speed Railways[R]. Taiwan: Taiwan University, 1996. (in Chinese)

图(11)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-20
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回