Characteristics and method for calculating earth pressure at rest of light weight soil with foamed particles
-
摘要: 轻量土作为一种可以大幅度减轻挡土墙后填土压力的新型土工材料,在公路工程和土方工程中具有极大的应用优势。为了研究发泡颗粒混合轻量土静止土压力特性,通过K0固结试验、模型试验,探究了加载路径、配比、填土深度等对轻量土静止土压力和静止土压力系数的影响规律。结果表明,轻量土的静止土压力系数与加载路径、配比有关。在模型试验中,随着竖向应力的增加,轻量土的侧向土压力与填土深度关系曲线逐渐由直线型转换为折线型。随着荷载卸除,侧向土压力与填土深度关系曲线逐渐由折线形恢复为直线型。加卸载过程中侧向土压力随填土深度的增加在填土h/2处出现拐点,存在临界深度。模型试验中,轻量土的静止土压力系数为0.34~0.48,相比于素土而言,轻量土具有较好的自立性能。轻量土填土墙背侧向土压力大约为素土的22%~30%,能够大幅度降低挡土墙后土压力,表明轻量土具有较好的工程性能。从轻量土独特的结构特性出发,以传统超固结土静止土压力系数公式为基础,引入相对结构度k,建立了轻量土结构性静止土压力系数公式。并且通过K0固结试验与模型试验结果验证了新建公式预测值与实测值的差别,表明该公式相比Jaky公式具有较高的准确性。Abstract: As a new kind of geosynthetics that can greatly reduce the earth pressure behind the retaining wall, the light weight soil has great application advantages in highway engineering and civil engineering. In order to study the characteristics of earth pressure at rest of the light weight soil with foamed particles, the influence laws of loading path, mixing ratio and filling depth on the earth pressure at rest and the coefficient of earth pressure at rest are investigated by the K0-consolidation tests and model tests. The results show that the coefficient of earth pressure at rest of the light weight soil is related to the loading path and mixed ratio. In the model tests, with the increase of vertical stress, the relationship curve between lateral earth pressure and filling depth of the light weight soil gradually changes from a straight line to a broken one. As the load is removed, the relationship curve between lateral earth pressure and filling depth gradually recovers from a broken line to a straight one. In the process of loading and unloading, for the lateral earth pressure, an inflection point appears at the filling depth of h/2 with its increase, where there is a critical depth. In the model tests, the coefficient of earth pressure at rest of light weight soil is 0.34~0.48. Compared with the remoulded soil, the light weight soil has better self-supporting performance. The lateral earth pressure of the light weight soil behind the retaining wall is about 22%~30% of that of the remoulded soil, which can greatly reduce the earth pressure behind the retaining wall, indicating that the light weight soil has good engineering performance. Considering the unique structural characteristics of the light weight soil, based on the traditional formula for the coefficient of earth pressure at rest of the overconsolidated soil, the relative structural degree k is introduced to establish the formula for the structural static earth pressure coefficient of the light weight soil. The difference between the predicted and measured values of the proposed formula is verified by the results of K0-consolidation and model tests, which indicates that the proposed fourmula has a higher accuracy than the Jaky formula.
-
0. 引言
江苏各市广泛分布的软弱土,具有高含水率、高压缩性、低渗透性、低抗剪强度、高含盐量及显著的结构性与流变性等特点,对其处理较为复杂。针对此类软黏土,电渗法有较好的处理效果,但是电渗法存在耗能过高、加固不均匀的问题[1]。为缓解城市用地紧张,根据已有研究成果,提高电渗加固软土性能主要有两种研究思路:①通过改变电极材料[2-3]、电极布置形式[4-5]和通电方式[6]等初始条件;②将电渗与其它方法联合使用,常见的有电渗-堆载[7]、电渗-真空预压[8]、化学电渗[9]等。本研究在第二种思路的基础上,将电渗法与堆载预压和化学灌浆结合,以期使电渗法更加经济可行。为探讨该法的可行性,本文开展电渗-堆载-化学灌浆联合法(Electro-Osmosis-Surcharge Preloading-Chemical Grouting,简称EO-SC-CG)和化学电渗(Electro-Omosis-Chemical Grouting,简称EO-CG)的对比试验,从排水量、通电电流、有效电势、十字板剪切强度、含水率等方面证实电渗-堆载-化学灌浆联合法的有效性。
1. 试验材料与试验方法
1.1 试验材料
室内模型试验所用土样为取自江苏盐城地区的滩涂软土,通过室内土工试验对软土的基本物理性质进行测试。试验前,将原状土烘干后击碎,然后倒入搅拌桶中充分搅拌均匀后静置24 h,再对软土进行重塑,使试验用滩涂软土的含水率达到40%,最终得到重塑土的基本物理性质指标如表1所示。
表 1 重塑土的基本指标Table 1. Basic parameters of remolded soil含水率 w/% 液限wL/% 塑限wP/% Gs 不排水抗剪强度cu/kPa 40 30.8 13.9 2.71 ≈0 1.2 试验装置
室内模型试验(EO-SC-CG与EO-CG)采用自制试验装置,主要由土样室和排水室两部分组成,其中排水室内的排水孔为直径25 mm的圆形孔洞,如图1所示。EO-CG装置模型与前者相同,区别仅在于EO-CG方法没有施加充当均布荷载的上覆砂。模型箱采用亚克力板材制成,模型箱尺寸为400 mm×300 mm×200 mm。阳极采用尺寸为350 mm×150 mm×3 mm的铁板;阴极所用电极尺寸与阳极相同,在电极板上均匀打下48个孔径为4 mm的小孔。注浆管采用内径9 mm,外径11 mm的PVC管,管壁均匀设置小孔,并将管底封闭,有利于注入的化学浆液向土体扩散,同时能够有效控制化学浆液过快的向土体底部沉积。阴极注浆材料选用Na2SiO3溶液,阳极注浆材料选用CaCl2溶液[10]。电导线采用多股铜芯电导线,导体材质为无氧铜,绝缘材料为聚氯乙烯。装置图1的上覆砂均匀铺在土样层上,既起到堆载的作用,又可以消除电渗模型几何边界引起的尺寸效应[11]。
1.3 试验方案
本文主要研究EO-SC-CG与EO-CG两种加固方法对盐城地区滩涂软土的加固效果,试验分为两组,基本参数如表2所示。试验的初始含水率为40%,电势梯度选取1 V/cm[12],电源电压均为23 V。
表 2 试验基本参数Table 2. Basic parameters of experiments组别 试验时间/h 堆载大小/kPa 注浆材料与注浆量 EO-SC-CG 48 1.5 CaCl2 (45mL)+Na2SiO3(45mL) EO-CG 48 0 CaCl2(45mL)+Na2SiO3(45mL) 试验开始前,将阳极电极放置在远离排水室一侧,阴极电极放置在靠近排水室一侧;两侧注浆管均放置在距电极3 cm处;分别放置两根测针在电极与注浆管中间。因为EO-SC-CG涉及施加堆载时间,故先开展EO-CG试验。两组试验开始通电后实时观测记录通电电流,电势与排水量。待排水量不再增加时,关闭电源,分上、中、下三层按距离阳极0,5,10,15,20 cm,取土样测量十字板剪切强度与含水率,土样测试点位置如图2所示。过程中两组试验注浆时间均定在电流大幅降低且保持稳定的时刻。依据袁国辉[13]进行的电渗-堆载联合试验,当电渗固结度达到40%时为最佳堆载时间。故EO-SC-CG可根据EO-CG得到最终沉降量S∞,利用平均固结度表达式:Uavg=St / S∞,得到固结度达到40%时的沉降量,施加堆载。
2. 试验结果与分析
2.1 排水量与排水速率
排水量与排水速率随时间的变化曲线如图3所示。因为施加堆载的作用,EO-SC-CG的排水量最终高于EO-CG。两组试验的排水量分别为1360,1170 mL,EO-SC- CG的排水量相对EO-CG增加16.2%。由图3可知,排水速率随时间呈现出逐渐减小的趋势,并且在化学注浆后排水速率均会先达到一个峰值点,之后逐步下降。EO-CG和EO-SC-CG分别在试验进行至10 h和8 h时注浆,注浆后排水速率1 h内增幅分别约为28.9%和14.3%,达到峰值时增幅分别约为34.1%和37.5%。因堆载预压的加持作用,EO-SC-CG的峰值增幅稍大。结合微观观测,随着电渗的进行,注入的浆液在直流电作用下生成CaSiO3并填充土体孔隙,导致土体的渗透性降低,进而影响土体的排水速率。试验后期,EO-SC-CG的排水速率高于EO-CG,说明EO-SC-CG因施加堆载预压,在一定程度上能够缓解土体后期排水效果较差的趋势。
2.2 有效电势
有效电势随时间的变化曲线如图4所示。由图4可知,两组试验的有效电势均呈现出先增加后减小的趋势,且其变化速率在注浆后都呈现出加快的趋势,说明注浆后,土中可移动的离子浓度增加,促进了土体内的离子移动速率,导致电阻减小,有效电势增加。EO-SC-CG在11 h施加堆载时,其有效电势较前一时刻没有明显变化,且达到第一次峰值的时间与EO-CG基本一致,说明施加堆载对有效电势的提升有限。两组试验的有效电势在第一次峰值后均呈现下降趋势,但是EO-SC-CG的下降速率较缓。因为阳极不断发生电化学反应,生成的胶结物附在土体表面,导致电极与土体接触界面上电阻增大,有效电势减小;加之阳极附近土中的水不断向阴极移动,致使阳极区土体失水产生裂缝,接触电阻增大。而EO-SC-CG的有效电势下降速率较缓是因为堆载作用能够有效抑制裂缝的产生,使得电阻增大缓慢。比较两组试验后期的曲线可知,EO-SC-CG的有效电势相对较大,进一步说明堆载作用在一定程度上能够抑制裂缝产生,减缓有效电势的减少,使有效电势总体上变化较为均匀。
2.3 十字板剪切强度与最终含水率
将所得结果在同一距离不同深度的强度以及含水率取均值,得到抗剪强度与最终含水率在电极间的分布如图5所示。由图5可知,抗剪强度随距阳极的距离增大而减小,阳极附近土体的抗剪强度最大。土中的水在电渗作用下,自阳极移动至阴极,阳极附近因为铁质电极的腐蚀,生成Fe2+、Fe3+的氧化物与氢氧化物等,一定程度上能够胶结土体。同时因为注浆作用,阳极附近发生化学反应生成Ca(OH)2、CSH和CAH等填充土体孔隙,使阳极附近的土体强度得到提升。两组试验中,EO-SC-CG的平均抗剪强度相对EO-CG提高约14%,故堆载对土体抗剪强度的提升具有一定作用。因为堆载产生的自重作用对土体进行了压密,导致土体抗剪强度的提升。由于电渗作用,孔隙水不断自阳极流向阴极,含水率的分布呈现出从阳极到阴极逐步增大的规律。相比EO-CG,EO-SC-CG处理后的土体含水率较低,减少约17.8%。将同一深度不同距离的抗剪强度与含水率取均值,得到抗剪强度与最终含水率随深度分布如图6所示。由图6可知,土体的抗剪强度沿深度逐渐降低,呈现出表层>中层>底层的规律,EO-SC-CG得到的平均强度相比EO-CG提高了14%。相比EO-CG,EO-SC-CG试验处理后同一深度的土体含水率较低,减少约17.6%。
3. 结论
通过电渗-堆载-化学灌浆与电渗-化学灌浆两组室内试验,分析试验过程中排水量、排水速率、有效电势、十字板剪切强度与含水率等,得以下结论:
(1)在EO-CG的基础上增加堆载对电渗排水有一定的促进作用,相对EO-CG,EO-SC-CG的排水速率增加25.8%,平均抗剪强度提高14%。同时,EO-SC-CG的有效排水时间更长,堆载作用在一定程度上能减缓土体后期排水速率降低的趋势。
(2)堆载一定程度上抑制裂缝产生,阻止有效电势减少,进而使有效电势总体上变化较均匀。
(3)EO-SC-CG不仅能促进土体排出水分,提高土体的密实度与强度,同时也能改善电极与土的接触性,实现电渗、化学灌浆和堆载预压的共同加固。
-
表 1 K0固结试验方案
Table 1 Test schemes for K0-consolidation tests
项目 水泥掺量ac /% EPS颗粒掺量ae / % 体积比be /% 龄期T/d 含水率w/% 压实度Dc /% 方案1 15 0.32,0.53,0.81,1.23,1.55 30,40,50,60,65 28 wop 90 方案2 10,15,20 0.81 50 28 wop 90 方案3(素土) 0 0 0 0 wop 90 注:加载路径为0,25,50,100,200,400 kPa,卸载路径为400,20,100,50,25,0 kPa。 表 2 挡土墙模型试验方案
Table 2 Model test schemes of retaining wall
土的
类别水泥掺量
ac/%EPS掺量ae% 龄期
T/d含水率
w / %压实度
Dc /%轻量土 15 0.32,0.81 28 wop 90 素土 0 0 0 注:加载路径为6.17,12.34,18.51,24.68 kPa,卸载路径为24.68,18.51,12.34,6.17 kPa。 表 3 不同配比轻量土相对结构度与模型调节参数
Table 3 Relative structural degrees and model adjustment parameters of light weight soil with different mixing ratios
配比 相对结构度k 模型调节参数m 素土 1 0 ac=15%,be=50% 2.93 -0.3134 ac=10%,be=30% 5.10 -0.2679 ac=15%,be=30% 6.20 -0.0821 表 4 模型试验静止土压力系数预测值与实测值对照表
Table 4 Comparison between predicted and measured values for coefficient of earth pressure at rest in model tests
土样配比 模型试验
K0实测值Jaky公式K0计算值 Jaky公式K0计算值与模型试验实测值相对误差/% 结构性静止土压力系数公式K0计算值 结构性静止土压力系数公式K0计算值与模型试验实测值相对误差/% 素土 0.5279 0.5845 10.72 0.5845 10.72 轻量土 ac=15%,be=50% 0.4148 0.5812 40.12 0.4146 -0.05 ac=10%,be=30% 0.3610 0.4940 36.84 0.3577 -0.91 ac=15%,be=30% 0.3831 0.4452 16.21 0.3821 -0.26 表 5 K0固结试验静止土压力系数预测值与实测值对照表
Table 5 Comparison between predicted and measured values for coefficient of earth pressure at rest in K0-consolidation tests
土样配比 固结试验K0实测值 Jaky公式
K0计算值Jaky公式K0计算值与K0固结试验实测值相对误差/% 结构性静止土压力系数公式K0计算值 结构性静止土压力系数公式计算值与K0固结试验实测值相对误差/% ac=15%,be=40% 0.120 0.5014 317.83 0.1175 -2.09 ac=15%,be=50% 0.145 0.5812 300.83 0.1531 5.61 ac=15%,be=60% 0.260 0.6037 132.20 0.1448 -3.44 ac=15%,be=65% 0.175 0.6353 263.03 0.1889 7.99 ac=10%,be=50% 0.160 0.5811 263.19 0.1408 -11.95 ac=20%,be=50% 0.130 0.5657 351.54 0.1387 6.70 -
[1] 侯天顺, 徐光黎. 发泡颗粒混合轻量土三轴应力–应变–孔压特性试验[J]. 中国公路学报, 2009, 22(6): 10–17. doi: 10.3321/j.issn:1001-7372.2009.06.002 HOU Tian-shun, XU Guang-li. Experiment on triaxial pore water pressure-stress-strain characteristics of foamed particle light weight soil[J]. China Journal of Highway and Transport, 2009, 22(6): 10–17. (in Chinese) doi: 10.3321/j.issn:1001-7372.2009.06.002
[2] MESRI G, HAYAT T M. The coefficient of earth pressure at rest[J]. Canadian Geotechnical Journal, 1993, 30(4): 647–666. doi: 10.1139/t93-056
[3] TERZAGHI Karl. Old earth pressure theories and new test results[J]. Engineering News Record, 1920, 85(14): 632–637.
[4] 王俊杰, 郝建云. 土体静止侧压力系数定义及其确定方法综述[J]. 水电能源科学, 2013, 31(7): 111–114. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201307031.htm WANG Jun-jie, HAO Jian-yun. Definition of coefficient of earth pressure and methods review[J]. Water Resources and Power, 2013, 31(7): 111–114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201307031.htm
[5] JAKY J. The coefficient of earth pressure at rest[J]. Journal for Society of Hungarian Architects and Engineers, Budapest, 1944: 355–358.
[6] MAYNE P W, KULHAWY F H. K0 - OCR relationships in soil[J]. Journal of the Geotechnical Engineering Division, 1982, 108(6): 851–872. doi: 10.1061/AJGEB6.0001306
[7] 史宏彦, 谢定义. 用应力矢量本构模型确定无黏性土的静止土压力系数[J]. 岩石力学与工程学报, 2000, 19(6): 766–769. doi: 10.3321/j.issn:1000-6915.2000.06.017 SHI Hong-yan, XIE Ding-yi. Determination of coefficient of earth pressure at rest for cohesionless soil by using stress vector-based constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 766–769. (in Chinese) doi: 10.3321/j.issn:1000-6915.2000.06.017
[8] 史宏彦, 谢定义, 汪闻韶. 确定无黏性土静止土压力系数的一个理论公式[J]. 水利学报, 2001, 32(4): 85–88. doi: 10.3321/j.issn:0559-9350.2001.04.015 SHI Hong-yan, XIE Ding-yi, WANG Wen-shao. A theoretical formula determining the coefficient of earth pressure at rest for cohesionless soil[J]. Journal of Hydraulic Engineering, 2001, 32(4): 85–88. (in Chinese) doi: 10.3321/j.issn:0559-9350.2001.04.015
[9] 强跃, 赵明阶, 林军志, 等. 静止土压力系数探究[J]. 岩土力学, 2013, 34(3): 727–730. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303019.htm QIANG Yue, ZHAO Ming-jie, LIN Jun-zhi, et al. Research on coefficient of earth pressure at rest[J]. Rock and Soil Mechanics, 2013, 34(3): 727–730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303019.htm
[10] BROOKER E W, IRELAND H O. Earth pressure at rest related to stress history[J]. Canadian Geotechnical Journal, 1965, 2(1): 1–15. doi: 10.1139/t65-001
[11] 王秀艳, 唐益群, 臧逸中, 等. 深层土侧向应力的试验研究及新认识[J]. 岩土工程学报, 2007, 29(3): 430–435. doi: 10.3321/j.issn:1000-4548.2007.03.020 WANG Xiu-yan, TANG Yi-qun, ZANG Yi-zhong, et al. Experimental studies and new ideas on the lateral stress in soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 430–435. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.03.020
[12] 李晓萍, 赵亚品. 静止侧压力系数及其试验方法的探讨[J]. 铁道工程学报, 2007, 24(8): 20–22. doi: 10.3969/j.issn.1006-2106.2007.08.006 LI Xiao-ping, ZHAO Ya-pin. Discussion on the still lateral pressure coefficient and testing method[J]. Journal of Railway Engineering Society, 2007, 24(8): 20–22. (in Chinese) doi: 10.3969/j.issn.1006-2106.2007.08.006
[13] GUO P J. Effect of density and compressibility on K0 of cohesionless soils[J]. Acta Geotechnica, 2010, 5(4): 225–238. doi: 10.1007/s11440-010-0125-0
[14] 赵富军. 天津地铁静止侧压力系数确定方法研究[J]. 铁道工程学报, 2016, 33(12): 99–104. doi: 10.3969/j.issn.1006-2106.2016.12.021 ZHAO Fu-jun. Research on the method of the determination of static lateral pressure coefficient in Tianjin metro[J]. Journal of Railway Engineering Society, 2016, 33(12): 99–104. (in Chinese) doi: 10.3969/j.issn.1006-2106.2016.12.021
[15] 陈存礼, 贾亚军, 金娟, 等. 含水率及应力对原状黄土静止侧压力系数的影响[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3535–3542. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1048.htm CHEN Cun-li, JIA Ya-jun, JIN Juan, et al. Influences of water content and stress on coefficient of lateral pressure at rest of undisturbed loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3535–3542. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1048.htm
[16] 王国富, 曹正龙, 路林海, 等. 黄河冲积层静止土压力系数原位测定与分析[J]. 岩土力学, 2018, 39(10): 3900–3906. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810050.htm WANG Guo-fu, CAO Zheng-long, LU Lin-hai, et al. Measurement and analysis about coefficient of earth pressure at rest in alluvium of the Yellow River[J]. Rock and Soil Mechanics, 2018, 39(10): 3900–3906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810050.htm
[17] 白冰, 陆土强. 聚苯乙烯泡沫塑料的测试及其在土工中的应用[J]. 岩土工程学报, 1993, 15(2): 104–108. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199302012.htm BAI Bing, LU Shi-qiang. Testing of polystyrene foam and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(2): 104–108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199302012.htm
[18] 徐光黎, 杨银湖. 轻量土及其在工程中的应用[J]. 地质科技情报, 2005, 24(4): 94–98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200504018.htm XU Guang-li, YANG Yin-hu. Light-weight soils and their applications[J]. Geological Science and Technology Information, 2005, 24(4): 94–98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200504018.htm
[19] BATHURST R J, ZARNANI S, GASKIN A. Shaking table testing of geofoam seismic buffers[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(4): 324–332.
[20] 李盛, 马莉, 王起才, 等. 高填黄土明洞卸载结构土压力模型试验和数值模拟分析[J]. 岩土工程学报, 2016, 38(4): 636–642. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604009.htm LI Sheng, MA Li, WANG Qi-cai, et al. Model tests and numerical simulations of earth pressure for unloading structures of high fill open cut tunnel[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 636–642. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604009.htm
[21] 侯天顺, 崔奕翔. EPS颗粒混合轻量土的动变形特性及修正Hardin-Drnevich模型研究[J]. 岩土工程学报, 2021, 43(9): 1602–1611. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109007.htm HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602–1611. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109007.htm
-
期刊类型引用(7)
1. 李俊毅. 电渗法加固土体技术的探究与展望. 岩土工程技术. 2024(02): 238-245 . 百度学术
2. 王炳辉,栾佶,张雷,金海晖,张文博. 电渗热固结处理顶管废弃泥浆的减量化研究. 地下空间与工程学报. 2024(02): 507-517 . 百度学术
3. 王华杰. 电渗试验中土体电阻变化规律探究. 科技创新与应用. 2024(34): 73-76 . 百度学术
4. 王炳辉,李贵豪,张雷,金海晖,吴涛,贾仲泽,金丹丹. 不同掺加材料对软土电渗加固效果的影响. 自然灾害学报. 2024(06): 86-97 . 百度学术
5. 桂书润,王龙嘉,班子越,赵飞燕,徐欣. 电渗联合堆载预压及化学法加速淤筑土固结的试验研究. 河南科技. 2023(05): 86-90 . 百度学术
6. 陈海鹏. 引水隧洞混凝土裂缝化学灌浆加固技术研究. 陕西水利. 2023(10): 154-156 . 百度学术
7. 李丽华,杨俊杰,徐维生,宋杨,曹毓. 电渗法联合化学固化法改良淤泥试验. 中国科技论文. 2022(12): 1340-1345 . 百度学术
其他类型引用(3)
-
其他相关附件