Processing math: 100%
  • Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

基于透明土的成层土中CPT贯入试验研究

卢谅, 何兵, 肖亮, 王宗建, 马书文, 林浩鑫

卢谅, 何兵, 肖亮, 王宗建, 马书文, 林浩鑫. 基于透明土的成层土中CPT贯入试验研究[J]. 岩土工程学报, 2022, 44(12): 2215-2224. DOI: 10.11779/CJGE202212008
引用本文: 卢谅, 何兵, 肖亮, 王宗建, 马书文, 林浩鑫. 基于透明土的成层土中CPT贯入试验研究[J]. 岩土工程学报, 2022, 44(12): 2215-2224. DOI: 10.11779/CJGE202212008
LU Liang, HE Bing, XIAO Liang, WANG Zong-jian, MA Shu-wen, LIN Hao-xin. Experimental study on CPT penetration in layered soil based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2215-2224. DOI: 10.11779/CJGE202212008
Citation: LU Liang, HE Bing, XIAO Liang, WANG Zong-jian, MA Shu-wen, LIN Hao-xin. Experimental study on CPT penetration in layered soil based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2215-2224. DOI: 10.11779/CJGE202212008

基于透明土的成层土中CPT贯入试验研究  English Version

基金项目: 

国家自然科学基金面上项目 52178314

详细信息
    作者简介:

    卢谅(1981—),女,博士,副教授,博士生导师,主要从事岩土工程等方面的研究工作。E-mail:luliangsky@163.com

  • 中图分类号: TU43

Experimental study on CPT penetration in layered soil based on transparent soil

  • 摘要: 静力触探(CPT)在成层土中的贯入阻力受土层界面影响显著,但目前对探头穿越土层界面时出现的“超前、滞后”现象仍缺乏系统的解释,利用贯入阻力划分土层仍依靠工程经验。采用透明土模型试验模拟探头在成层土中的贯入过程,通过观测探头阻力变化曲线和探头附近土体的变形情况,研究CPT在成层土中的贯入机理。结合扩孔理论和Mohr-Coulomb准则,提出锥尖阻力影响深度的计算方法,结合试验数据和理论计算,得到上层砂土下层黏土的塑性区影响范围与贯入阻力曲线的“超前”深度一致。并利用PFC分析成层土中,CPT贯入阻力反映的层间界面效应的影响因素。结果表明,CPT贯入过程中土体变形与土体自身强度、初始地应力和土层界面位置有关;相邻两层土体的强度差异对“超前、滞后”深度有显著影响。利用本文结论根据土体的塑性区影响范围与土体的超前深度一致对土层进行划分,对比目前的土层划分的复杂性,可直接依据该方法对土层直接划分,提高了土层划分的效率和准确性。
    Abstract: The penetration resistance of cone penetration test (CPT) in layered soil is significantly affected by the soil interface, but there is still a lack of systematic explanation for the phenomenon of "leading and lagging" when the probe crosses the soil interface. The division of soil layers through the penetration resistance still depends on engineering experience. A series of transparent soil model tests are carried out to simulate the penetration process of the probe in layered soil. The penetration mechanism of CPT in the layered soil is studied by observing the resistance curve of the probe and the deformation of soil near the probe. Combining with the cavity expansion theory and the Mohr Coulomb criterion, the method for calculating the influence depth of the cone resistance is proposed. Based on the test data and theoretical calculation, it is found that the influence range of the plastic zone in the two-layered soil with the upper sand and the lower clay is consistent with the "leading" depth of the penetration resistance curve. PFC is used to analyze the influence factors of the interface effct reflected by the CPT penetration resistance in layered soil. The results show that the soil deformation during CPT penetration is related to the soil strength, the initial in-situ stress and the position of soil interface. The strength difference between two adjacent layers of soil has a significant influence on the "leading and lagging" depth. Based on the research results, the soil layer is divided according to the plastic zone of soil and the leading depth of soil. Compared with the current complex methods of soil layer division, the proposed method can improve the efficiency and accuracy of soil layer division.
  • 图  1   CPT贯入透明土模型装置

    Figure  1.   Model device of CPT penetrating transparent soil

    图  2   贯入阻力随深度变化曲线

    Figure  2.   Curves of penetration resistance versus depth

    图  3   单层土体位移矢量图

    Figure  3.   Displacement vector diagram of single-layer soil

    图  4   贯入单层黏土不同深度时位移矢量图

    Figure  4.   Diagram of displacement vector when penetrating into a single layer of clay at different depths

    图  5   成层土位移矢量图(上层黏土下层砂土)

    Figure  5.   Diagram of displacement vector of layered soil (upper clay and lower sand)

    图  6   成层土位移矢量图(上层砂土下层黏土)

    Figure  6.   Diagram of displacement vector of layered soil (upper sand and lower clay)

    图  7   柱状孔扩张问题的计算模型

    Figure  7.   Model for cylindrical cavity expansion problem

    图  8   简化模型

    Figure  8.   Simplified model

    图  9   理论预测和试验数据

    Figure  9.   Theoretical prediction and experimental data

    图  10   数值模拟土体位移矢量图

    Figure  10.   Diagram of simulated soil displacement vector

    图  11   贯入阻力模拟结果

    Figure  11.   Simulated results of penetration resistance

    图  12   贯入速度的影响

    Figure  12.   Influences of penetration speed

    图  13   探头半径的影响

    Figure  13.   Influences of probe radius

    图  14   土体参数的影响

    Figure  14.   Influences of soil parameters

    表  1   透明土试样的基本物理力学指标

    Table  1   Basic physical and mechanical indexes of transparent soil

    试样 ρ(干)/(g·cm-3) ρ(油)/(g·cm-3) E/MPa ν φ0/(°) c/kPa e
    熔融石英砂 1.464 1.532 40 0.32 34 0 0.663
    无定形硅粉 0.056~0.230 1.100 1.5 0.55 14~18 11 1.224
    下载: 导出CSV

    表  2   贯入模型试验工况

    Table  2   Test conditions of penetration model

    工况 土层类型
    工况1 单层砂土
    工况2 单层黏土
    工况3 上层黏土下层砂土
    工况4 上层砂土下层黏土
    下载: 导出CSV

    表  3   土体参数变化工况图

    Table  3   Working conditions of soil parameters

    工况 E
    /(N·m-1)
    E
    /(N·m-1)
    黏结强度/N f f
    1 1×8 5×105 400 0.35 0.12
    2 1×8 1×107 600 0.35 0.20
    3 1×8 5×106 500 0.35 0.17
    4 5×7 5×106 500 0.30 0.17
    5 5×8 5×106 500 0.40 0.17
    下载: 导出CSV

    表  4   数值模拟参数设置

    Table  4   Setting of numerical parameters

    工况 土层
    类型
    法向刚度kn/(N·m-1) 切向刚ks
    /(N·m-1)
    f 黏结强度/N
    1 土层1 1×108 1×108 0.35
    2 土层2 5×106 5×106 0.20 500
    3 土层1 1×108 1×108 0.35
    土层2 5×106 5×106 0.20 500
    4 土层2 5×106 5×106 0.20 500
    土层1 1×108 1×108 0.35
    下载: 导出CSV
  • [1] 蒋明镜, 吕雷, 李立青, 等. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783–1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010003.htm

    JIANG Ming-jing, LÜ Lei, LI Li-qing, et al. Bearing properties of TJ-M1 Mars soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1783–1789. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010003.htm

    [2] 夏增明, 蒋崇伦, 孙渝文. 静力触探模型试验及机理分析[J]. 长沙铁道学院学报, 1990(3): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199003000.htm

    XIA Zeng-ming, JIANG Chong-lun, SUN Yu-wen. The mode experiment and analysis of the mechanism in static penetration test[J]. Journal of Changsha Railway University, 1990(3): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199003000.htm

    [3] 陈维家, 汪火旺. 静力触探中土层界面效应试验研究[J]. 水文地质工程地质, 2003, 30(2): 25–27. doi: 10.3969/j.issn.1000-3665.2003.02.006

    CHEN Wei-jia, WANG Huo-wang. Research of soil-layer interface effect in cone penetrafion test[J]. Hydrogeology and Engineering Geology, 2003, 30(2): 25–27. (in Chinese) doi: 10.3969/j.issn.1000-3665.2003.02.006

    [4]

    YU H S, SCHNAID F, COLLINS I F. Analysis of cone pressuremeter tests in sands[J]. Journal of Geotechnical Engineering, 1996, 122(8): 623–632. doi: 10.1061/(ASCE)0733-9410(1996)122:8(623)

    [5]

    WALKER J, YU H S. Analysis of the cone penetration test in layered clay[J]. Géotechnique, 2010, 60(12): 939–948. doi: 10.1680/geot.7.00153

    [6]

    MO P Q, MARSHALL A M, YU H S. Layered effects on soil displacement around a penetrometer[J]. Soils and Foundations, 2017, 57(4): 669–678. doi: 10.1016/j.sandf.2017.04.007

    [7]

    MO P Q, MARSHALL A M, YU H S. Interpretation of cone penetration test data in layered soils using cavity expansion analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 1–12.

    [8] 蔡国军, 刘松玉, 童立元, 等. 基于聚类分析理论的CPTU土分类方法研究[J]. 岩土工程学报, 2009, 31(3): 416–424. doi: 10.3321/j.issn:1000-4548.2009.03.018

    CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416–424. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.03.018

    [9]

    CAI G J, LIU S Y, PUPPALA A J. Comparison of CPT charts for soil classification using PCPT data: example from clay deposits in Jiangsu Province, China[J]. Engineering Geology, 2011, 121(1/2): 89–96.

    [10]

    CAI G J, LIU S Y, TONG L Y, et al. Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles[J]. Engineering Geology, 2009, 104(3/4): 211–222.

    [11] 孔纲强, 孙学谨, 肖扬, 等. 透明土与标准砂压缩变形特性对比试验研究[J]. 岩土工程学报, 2016, 38(10): 1895–1903. doi: 10.11779/CJGE201610020

    KONG Gang-qiang, SUN Xue-jin, XIAO Yang, et al. Comparative experiments on compressive deformation properties of transparent soil and standard sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1895–1903. (in Chinese) doi: 10.11779/CJGE201610020

    [12] 吴跃东, 陈明建, 周云峰, 等. 新型透明黏土的配制及其基本特性研究[J]. 岩土工程学报, 2020, 42(增刊1): 141–145. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1028.htm

    WU Yue-dong, CHEN Ming-jian, ZHOU Yun-feng, et al. Distribution and basic characteristics of new transparent clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 141–145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1028.htm

    [13]

    NI Q, HIRD C C, GUYMER I. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry[J]. Géotechnique, 2010, 60(2): 121–132. doi: 10.1680/geot.8.P.052

    [14] 马少坤, 韦榕宽, 邵羽, 等. 基于透明土的隧道开挖面稳定性三维可视化模型试验研究及应用[J]. 岩土工程学报, 2021, 43(10): 1798–1806, 1958. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110006.htm

    MA Shao-kun, WEI Rong-kuan, SHAO Yu, et al. 3D visual model tests on stability of tunnel excavation surface based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1798–1806, 1958. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110006.htm

    [15] 周东, 刘汉龙, 仉文岗, 等. 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686–2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm

    ZHOU Dong, LIU Han-long, ZHANG Wen-gang, et al. Transparent soil model test on the displacement field of soil around single passive pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2686–2694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm

    [16]

    EZZEIN F M, BATHURST R J. A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil[J]. Geotextiles and Geomembranes, 2014, 42(3): 246–255. doi: 10.1016/j.geotexmem.2014.04.003

    [17] 陈建峰, 许强, 郭鹏辉, 等. 基于透明土技术的加筋地基模型试验[J]. 同济大学学报(自然科学版), 2017, 45(3): 330–335. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703005.htm

    CHEN Jian-feng, XU Qiang, GUO Peng-hui, et al. Model tests of reinforced foundation based on transparent soil technique[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 330–335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703005.htm

    [18]

    SUI W H, ZHENG G S. An experimental investigation on slope stability under drawdown conditions using transparent soils[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(3): 977–985. doi: 10.1007/s10064-017-1082-8

    [19] 王壮, 李驰, 丁选明. 基于透明土技术土岩边坡滑移机理的模型试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 185–188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2048.htm

    WANG Zhuang, LI Chi, DING Xuan-ming. Model tests on sliding mechanism of soil-rock slopes based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 185–188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2048.htm

    [20]

    WANG Z, LI C, DING X M. Application of transparent soil model tests to study the soil-rock interfacial sliding mechanism[J]. Journal of Mountain Science, 2019, 16(4): 935–943.

    [21]

    LUNNE T, POWELL J J M, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. Florida: CRC Press, 2002.

    [22]

    CHEN Z Q, HUANG M S, SHI Z H. Application of a state-dependent sand model in simulating the cone penetration tests[J]. Computers and Geotechnics, 2020, 127: 103780.

    [23]

    TSCHUSCHKE W, KUMOR M K, WALCZAK M, et al. Cone penetration test in assessment of soil stiffness[J]. Geological Quarterly, 2015: 419–425.

    [24]

    TEHRANI F S, ARSHAD M I, PREZZI M, et al. Physical modeling of cone penetration in layered sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(1): 1–10.

    [25]

    CHANG M F. Undrained cavity expansion in modified Cam clay II: application to the interpretation of the piezocone test[J]. Géotechnique, 2001, 52(4): 307–311.

    [26]

    CUDMANI R, OSINOV V A. The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests[J]. Canadian Geotechnical Journal, 2001, 38(3): 622–638.

    [27] 李波. 孔扩张理论研究及其在静力触探技术中的应用[D]. 大连: 大连理工大学, 2007.

    LI Bo. Study on Cavity Expansion and its Applications to Cone Penetration Test[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)

    [28] 周瑜, 晏鄂川, 李辉, 等. 基于静力触探曲线的土体量化分层方法[J]. 工程勘察, 2011, 39(3): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201103007.htm

    ZHOU Yu, YAN E-chuan, LI Hui, et al. A quantified soil stratifying method based on cone penetration test curve[J]. Geotechnical Investigation & Surveying, 2011, 39(3): 24–26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201103007.htm

    [29] 林军, 蔡国军, 刘松玉, 等. 基于孔压静力触探力学分层的土体边界识别方法研究[J]. 岩土力学, 2017, 38(5): 1413–1423. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705025.htm

    LIN Jun, CAI Guo-jun, LIU Song-yu, et al. Identification of soil layer boundaries using mechanical layered method base on piezocone penetration test data[J]. Rock and Soil Mechanics, 2017, 38(5): 1413–1423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705025.htm

    [30] 曹子君, 郑硕, 李典庆, 等. 基于静力触探的土层自动划分方法与不确定性表征[J]. 岩土工程学报, 2018, 40(2): 336–345. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802020.htm

    CAO Zi-jun, ZHENG Shuo, LI Dian-qing, et al. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 336–345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802020.htm

    [31]

    DUAN N, CHENG Y. A modified method of generating specimens for a 2D DEM centrifuge model[C]//Geo-Chicago, American Society of Civil Engineers. Chicago, 2016.

    [32] 周健, 王家全, 曾远, 等. 土坡稳定分析的颗粒流模拟[J]. 岩土力学, 2009, 30(1): 86–90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901021.htm

    ZHOU Jian, WANG Jia-quan, ZENG Yuan, et al. Simulation of slope stability analysis by particle flow code[J]. Rock and Soil Mechanics, 2009, 30(1): 86–90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901021.htm

    [33] 周博, 汪华斌, 赵文锋, 等. 黏性材料细观与宏观力学参数相关性研究[J]. 岩土力学, 2012, 33(10): 3171–3175, 3177. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210047.htm

    ZHOU Bo, WANG Hua-bin, ZHAO Wen-feng, et al. Analysis of relationship between particle mesoscopic and macroscopic mechanical parameters of cohesive materials[J]. Rock and Soil Mechanics, 2012, 33(10): 3171–3175, 3177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210047.htm

    [34] 陈建峰, 李辉利, 周健. 黏性土宏细观参数相关性研究[J]. 力学季刊, 2010, 31(2): 304–309. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201002024.htm

    CHEN Jian-feng, LI Hui-li, ZHOU Jian. Study on the relevance of macro-micro parameters for clays[J]. Chinese Quarterly of Mechanics, 2010, 31(2): 304–309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201002024.htm

    [35] 宁孝梁. 黏性土的细观三轴模拟与微观结构研究[D]. 杭州: 浙江大学, 2017.

    NING Xiao-liang. The Meso-Simulations of Triaxial Tests and Microstructure Study of The Cohesive Soil[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)

    [36] 雷华阳, 王铁英, 张志鹏, 等. 高黏性新近吹填淤泥真空预压试验颗粒流宏微观分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1784–1794. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706015.htm

    LEI Hua-yang, WANG Tie-ying, ZHANG Zhi-peng, et al. Macro-and meso-analysis of newly formed highly viscous dredger fill under vacuum preloading using particle flow theory[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6): 1784–1794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706015.htm

    [37]

    GUI M W, BOLTON M D. Geometry and Scale Effects in CPT and Pile Design, in Geotechnical Site Characterization [M]. Rotterdam: Balkema, 1998: 1063–1068.

    [38]

    BUTLANSKA J, ARROYO M, GENS A. Size effects on a virtual calibration chamber[M]// Numerical Methods in Geotechnical Engineering: NUMGE 2010. Boca Raton: CRC Press. 2010.

    [39]

    ARROYO M, BUTLANSKA J, GENS A, et al. Cone penetration tests in a virtual calibration chamber[J]. Géotechnique, 2011, 61(6): 525–531.

图(14)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回