• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

竖向动荷载作用下端承型群桩动力相互作用解析解

郑长杰, 崔亦秦, 丁选明, 栾鲁宝

郑长杰, 崔亦秦, 丁选明, 栾鲁宝. 竖向动荷载作用下端承型群桩动力相互作用解析解[J]. 岩土工程学报, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005
引用本文: 郑长杰, 崔亦秦, 丁选明, 栾鲁宝. 竖向动荷载作用下端承型群桩动力相互作用解析解[J]. 岩土工程学报, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005
ZHENG Chang-jie, CUI Yi-qin, DING Xuan-ming, LUAN Lu-bao. Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005
Citation: ZHENG Chang-jie, CUI Yi-qin, DING Xuan-ming, LUAN Lu-bao. Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005

竖向动荷载作用下端承型群桩动力相互作用解析解  English Version

基金项目: 

山地城镇建设与新技术教育部重点实验室开放基金项目 LNTCCMA-20210110

国家自然科学基金项目 52178318

国家自然科学基金项目 52008059

详细信息
    作者简介:

    郑长杰(1989—),男,博士,教授,主要从事桩基动力学与岩土地震工程方面的研究工作。E-mail: zcj@fjut.edu.cn

    通讯作者:

    栾鲁宝, E-mail: luanlub@163.com

  • 中图分类号: TU473

Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads

  • 摘要: 基于平面应变假定,建立了考虑被动桩散射效应的桩–土–桩竖向耦合振动响应分析计算模型。依托该计算模型,首先求解土体控制方程,得到桩周土纵向位移表达式、桩周土纵向复阻抗以及土体位移衰减函数,然后基于严格的桩–土耦合作用,求解外荷载作用下的主动桩位移和由主动桩振动产生的被动桩位移,并求出由被动桩振动产生的主动桩位移,由此得到考虑被动桩散射效应的桩–桩动力相互作用因子。基于求得的修正桩–桩动力相互作用因子,建立考虑被动桩散射效应的群桩竖向动力刚度矩阵,结合桩帽性质及叠加原理,推导得到竖向动荷载作用下的群桩竖向动力响应解析解。基于所得解进行算例分析表明:退化解与已有文献解吻合很好,验证了解的合理性;被动桩的散射效应对小间距群桩的振动响应有不可忽视的影响;桩间距和桩长径比对桩–桩动力相互作用因子、群桩竖向动阻抗有显著影响。
    Abstract: An analytical model for pile-soil-vertical coupled vibration of the pile considering the scattering effects of the passive pile is proposed based on the classical plane strain assumption. The governing equation for the soil is solved to obtain the expressions for the vertical displacement and resistance of the soil and the attenuation function of the soil displacement. Based on rigorous pile-soil interaction, the pile-interaction factor of the pile considering the scattering effects of the passive pile is obtained by solving the displacement of the active pile under vertical excitation and the displacement of the passive pile caused by the vibration of the active pile, as well as the displacement of the active pile caused by the scattering waves of the passive pile. Based on the modified pile-pile interaction factor, a stiffness-matrix is then established to derive the vertical dynamic responses of the pile groups by considering the scattering effects of the passive pile. Then the analytical solution for the vertical dynamic impedance of the pile groups is derived by incorporating the property of pile cap and the superposition principle. Finally, some arithmetical cases are presented to conduct the numerical analysis. It is found that the degenerated solution for the present solution agrees well with the existing one. The scattering effects cannot be ignored for the pile groups with small pile spacing. The pile spacing and slenderness ratio have considerable effects on the pile-interaction factor of the pile and the vertical dynamic impedance of the pile groups.
  • 图  1   群桩计算示意图

    Figure  1.   Conceptual model for pile groups

    图  2   桩–桩相互作用示意图

    Figure  2.   Schematic illustration of proposed model to account for pile-pile mutual interaction

    图  3   模型试验仪器布置图

    Figure  3.   Arrangement of model and experimental equipments

    图  4   本文解析解与试验结果对比

    Figure  4.   Comparison between proposed solutions and model tests

    图  5   本文解与Nogami和Konagai解[26]对比

    Figure  5.   Comparison of impedances of pile groups computed by proposed solution with those obtained by Nogami & Konagai[26]

    图  6   被动桩影响下桩–桩动力相互作用因子与Mylonakis等[8]

    解对比

    Figure  6.   Comparison of interaction factor computed by proposed solution with that by Mylonakis et al[8]

    图  7   被动桩影响下群桩动力复阻抗与Mylonakis等[8]解对比

    Figure  7.   Comparison of dynamic complex impedance computed by proposed solution with that by Mylonakis et al [8]

    图  8   桩间距对群桩相互作用因子影响

    Figure  8.   Variation of interaction factor with pile spacing

    图  9   长径比对群桩相互作用因子影响

    Figure  9.   Variation of interaction factor with slenderness ratio of pile

    图  10   桩间距对群桩动力复阻抗影响

    Figure  10.   Variation of dynamic complex impedance with pile spacing

    图  11   长径比对群桩动力复阻抗影响

    Figure  11.   Variation of dynamic complex impedance with slenderness ratio of pile

  • [1]

    POULOS H G. Analysis of the settlement of pile groups[J]. Géotechnique, 1968, 18(4): 449–471. doi: 10.1680/geot.1968.18.4.449

    [2] 任青, 黄茂松. 分层地基中柔性高承台群桩基础的竖向振动特性[J]. 土木工程学报, 2009, 42(4): 107–113. doi: 10.3321/j.issn:1000-131X.2009.04.015

    REN Qing, HUANG Mao-song. Analysis of axial vibration of floating pile groups with flexible caps in layered soils[J]. China Civil Engineering Journal, 2009, 42(4): 107–113. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.04.015

    [3] 吴志明, 黄茂松, 吕丽芳. 桩–桩水平振动动力相互作用研究[J]. 岩土力学, 2007, 28(9): 1848–1855. doi: 10.3969/j.issn.1000-7598.2007.09.015

    WU Zhi-ming, HUANG Mao-song, LÜ Li-fang. Research on pile-pile dynamic interaction of lateral vibration[J]. Rock and Soil Mechanics, 2007, 28(9): 1848–1855. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.015

    [4] 刘林超, 闫启方, 闫盼. 考虑三维波动的饱和土中管桩群桩的水平振动研究[J]. 岩土力学, 2017, 38(10): 2817–2825. doi: 10.16285/j.rsm.2017.10.006

    LIU Lin-chao, YAN Qi-fang, YAN Pan. Horizontal vibration of pipe pile groups in saturated soil considering three-dimensional wave effects[J]. Rock and Soil Mechanics, 2017, 38(10): 2817–2825. (in Chinese) doi: 10.16285/j.rsm.2017.10.006

    [5]

    ZHANG S P, CUI C Y, YANG G. Vertical dynamic impedance of pile groups partially embedded in multilayered, transversely isotropic, saturated soils[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 106–115. doi: 10.1016/j.soildyn.2018.11.003

    [6]

    KAYNIA A M. Dynamic Stiffness dnd Seismic Response of Pile Groups[D]. Cambridge: Massachusetts Institute of Technology, 1982.

    [7]

    DOBRY R, GAZETAS G. Simple method for dynamic stiffness and damping of floating pile groups[J]. Géotechnique, 1988, 38(4): 557–574. doi: 10.1680/geot.1988.38.4.557

    [8]

    MYLONAKIS G, GAZETAS G. Vertical vibration and additional distress of grouped piles in layered soil[J]. Soils and Foundations, 1998, 38(1): 1–14. doi: 10.3208/sandf.38.1

    [9]

    MYLONAKIS G. Contributions to Static and Seismic Analysis of Piles and Pile-Supported Bridge Piers[D]. Buffalo : State University of New York at Buffalo, 1995.

    [10] 蒯行成, 沈蒲生. 层状介质中群桩水平动力阻抗的简化计算方法[J]. 振动工程学报, 1998, 11(3): 258–264. doi: 10.16385/j.cnki.issn.1004-4523.1998.03.002

    KUAI Xing-cheng, SHEN Pu-sheng. Simplified method for calculating horizontal dynamic impedances of pile groups in layered media[J]. Journal of Vibration Engineering, 1998, 11(3): 258–264. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.1998.03.002

    [11] 黄茂松, 江杰, 梁发云, 等. 层状地基中桩基础的竖向荷载位移关系非线性分析方法[J]. 岩土工程学报, 2008, 30(10): 1423–1429. doi: 10.3321/j.issn:1000-4548.2008.10.001

    HUANG Mao-song, JIANG Jie, LIANG Fa-yun, et al. Nonlinear analysis for settlement of vertically loaded pile foundation in layered soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1423–1429. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.001

    [12] 任青, 黄茂松, 钟锐, 等. 部分埋入群桩的竖向振动特性[J]. 岩土工程学报, 2009, 31(9): 1384–1390. doi: 10.3321/j.issn:1000-4548.2009.09.010

    REN Qing, HUANG Mao-song, ZHONG Rui, et al. Vertical vibration of partially embedded pile groups[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1384–1390. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.09.010

    [13] 陈海兵, 梁发云. 群桩基础水平动力响应简化边界元频域解答[J]. 岩土工程学报, 2014, 36(6): 1057–1063. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15744.shtml

    CHEN Hai-bing, LIANG Fa-yun. Simplified boundary element method for lateral vibration response of pile groups in frequency domain[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1057–1063. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15744.shtml

    [14] 刘林超, 杨骁. 基于薄层法的饱和土桩纵向振动研究[J]. 岩土力学, 2010, 31(1): 92–98. doi: 10.3969/j.issn.1000-7598.2010.01.017

    LIU Lin-chao, YANG Xiao. Study of longitudinal vibrations of pile in saturated soil based on layer method[J]. Rock and Soil Mechanics, 2010, 31(1): 92–98. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.017

    [15] 刘林超, 杨骁. 饱和土中桩-桩竖向动力相互作用及群桩竖向振动[J]. 工程力学, 2011, 28(1): 124–130, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101022.htm

    LIU Lin-chao, YANG Xiao. Pile to pile vertical dynamic interaction and vertical vibration of pile groups in saturated soil[J]. Engineering Mechanics, 2011, 28(1): 124–130, 137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101022.htm

    [16] 史吏, 王慧萍, 孙宏磊, 等. 群桩基础引发饱和地基振动的近似解析解[J]. 岩土力学, 2019, 40(5): 1750–1760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905015.htm

    SHI Li, WANG Hui-ping, SUN Hong-lei, et al. Approximate analytical solution on vibrations of saturated ground induced by pile foundations[J]. Rock and Soil Mechanics, 2019, 40(5): 1750–1760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905015.htm

    [17] 熊辉, 江雅丰, 禹荣霞. 层状地基中基于Laplace变换的桩基横向振动阻抗计算[J]. 岩土力学, 2018, 39(5): 1901–1907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805044.htm

    XIONG Hui, JIANG Ya-feng, YU Rong-xia. Lateral vibration impedance of piles embedded in layered soil based on Laplace transform[J]. Rock and Soil Mechanics, 2018, 39(5): 1901–1907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805044.htm

    [18]

    QU L M, DING X M, KOUROUSSIS G, et al. Dynamic interaction of soil and end-bearing piles in sloping ground: numerical simulation and analytical solution[J]. Computers and Geotechnics, 2021, 134: 103917.

    [19]

    KAYNIA A M, KAUSEL E. Dynamics of piles and pile groups in layered soil media[J]. Soil Dynamics and Earthquake Engineering, 1991, 10(8): 386–401.

    [20]

    RADHIMA J, KANELLOPOULOS K, GAZETAS G. Static and dynamic lateral non-linear pile–soil–pile interaction[J]. Géotechnique, 2022, 72(7): 642–657.

    [21]

    Geotechnical and Foundation Design Considerations: API RP 2GEO—2011 (R2014)[S]. 2014.

    [22]

    Support Structures for Wind Turbines: DNV GL—ST—0126[S]. Oslo: Det Norske Veritas, 2016.

    [23]

    POESSET J M. Stiffness and damping coefficients of foundations[C]// Proc., Dynamic Response of Pile Foundations: Analytical Aspects, ASCE, New York, 1980: 1–3.

    [24]

    NOVAK M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4): 574–598.

    [25]

    NOVAK M, ABOUL-ELLA F, NOGAMI T. Dynamic soil reactions for plane strain case[J]. Journal of the Engineering Mechanics Division, 1978, 104(4): 953–959.

    [26]

    NOGAMI T, KONAGAI K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, 1986, 112(11): 1241–1252.

  • 期刊类型引用(10)

    1. 陆晶晶,李康. 柔性沥青路面病害成因分析及修复措施研究. 建筑机械. 2025(01): 16-21 . 百度学术
    2. 路继红,李丽胜,张沛林. 河西盐渍土地区路面拱胀特征与防治技术措施. 价值工程. 2025(16): 134-136 . 百度学术
    3. 林宇坤,宋玲,刘杰,闫晓亮,朱世煜. 荒漠区沥青路面拱胀病害机理及影响因素分析. 公路交通科技. 2024(04): 31-41 . 百度学术
    4. 张辉,王志杰. 硫酸盐侵蚀作用对ATB力学性能的影响. 安徽建筑. 2024(07): 84-87 . 百度学术
    5. 陆晶晶,刘德功. 尼日利亚某A级公路柔性沥青路面病害分析与路面结构设计. 建筑机械. 2024(11): 10-15 . 百度学术
    6. 张梦媛,丁龙亭,王选仓,谢金生,王孜健. 基于Comsol Multiphysics的半浸泡非饱和水泥基材料水分输运数值模型研究. 重庆大学学报. 2024(12): 45-56 . 百度学术
    7. 张留俊,裘友强,张发如,李雄飞,刘军勇. 降水入渗条件下氯盐渍土水盐迁移规律. 交通运输工程学报. 2023(04): 116-127 . 百度学术
    8. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 . 百度学术
    9. 吴军. 掺入玄武岩纤维的道桥沥青路面复合材料试验分析. 建筑科技. 2023(06): 108-110 . 百度学术
    10. 屈磊,许健,陈忠燕,刘永昊. 新疆盐渍土地区公路纵向开裂机制探讨. 市政技术. 2022(10): 40-44 . 百度学术

    其他类型引用(7)

  • 其他相关附件

图(11)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 17
出版历程
  • 收稿日期:  2021-09-08
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回