Dynamic stability evaluation of submarine slopes with hydrate reservoir under influences of heat injection exploitation
-
摘要: 注热开采会破坏水合物储层的温压平衡,引发水合物分解、储层孔隙压力激增,进而可能诱发海底斜坡沿水合物层发生失稳滑动甚至大规模海底滑坡,因此研究开采影响下水合物储层的动态响应和海底斜坡实时稳定性十分重要。首先推导了一种考虑热-水-化(THC)耦合作用的实时超孔压求解格式,建立水合物饱和度与超孔压之间的内在关系;进一步,基于无限坡极限平衡理论,发展水合物注热开采下海底斜坡动态稳定性的简化评价方法,并开发相应的数值模拟及计算程序。利用该方法对中国南海北部陆坡第二次水合物试采区开展了深入分析,探究了注热开采过程中海底斜坡的温度剖面、水合物饱和度剖面和动态稳定性安全系数等演变特征,并提出了合理化的开采建议。研究成果为深刻认识水合物分解引起的海底斜坡失稳破坏机理、实现水合物的安全可持续开发和海洋地质灾害风险的科学评估提供了重要依据。Abstract: The heat injection exploitation will destroy the temperature and pressure balance of hydrate reservoirs, cause hydrate dissociation, lead to the dramatic increase of pore pressure of strata, and then induce the instability of submarine slopes along the hydrate reservoirs or even a large-scale submarine landslide. Therefore, it is very important to investigate the dynamic response of the hydrate reservoirs and the real-time stability of the submarine slopes after environmental changes. First, a solving equation for calculating the real-time excess pore pressure considering thermo-hydro-chemical (THC) coupling is derived, and the internal relation between the hydrate saturation and the excess pore pressure is also established. Further, a simplified evaluation approach for the dynamic stability of the submarine slopes under the influences of heat injection exploitation of the hydrate reservoirs is proposed based on the theory of infinite slope limit equilibrium analysis, and the corresponding numerical simulation and calculation code are developed. This approach is employed to analyze the submarine slope in the second hydrate extraction area on the northern continental slope of the South China Sea. The evolution characteristics of the submarine slopes in the process of heat injection exploitation of the hydrate reservoirs, such as the temperature profile, hydrate saturation profile and dynamic stability factors, are explored, and the reasonable mining suggestions are put forward. The research results provide an important basis for understanding the mechanism of instability of submarine slopes caused by hydrate dissociation, realizing the safe and sustainable development of the hydrate reservoirs and the scientific assessment of marine geological disaster risks.
-
0. 引言
洞室开挖后根据围岩的应力与变形可以将其分为弹性区、塑性软化区、塑性残余区[1-2],弹性区内围岩的应力值没有超过岩体极限承载力,计算时各参数可以取峰值;塑性软化区内的应力值超过岩体极限承载力,岩体参数发生劣化且承载能力与弹性区相比有所下降;塑性残余区内的围岩处于“流动状态”,计算其应力与变形时需采用参数残余值[3-4]。
文献[5~9]在考虑围岩应变软化及其它影响因素后推导了洞室围岩应力场及塑性区半径,发现洞室围岩应力分布、塑性区半径均与围岩应变软化密切相关,围岩的应变软化现象会使塑性区半径增大,同时维持洞室稳定所需要的支护阻力pi比不考虑应变软化时更大。
目前基于弹塑性理论与应变软化模型对洞室围岩稳定性及变形等方面的研究较为充足,但采用传统应变软化模型时只考虑了黏聚力与内摩擦角等强度参数的折减,忽略了弹性模量等刚度参数的折减[10-12],这会导致计算得到的围岩变形量偏小,不符合实际。此外洞室开挖后多采用系统锚杆对围岩进行加固,系统锚杆可以控制围岩变形,提高围岩强度参数,增加洞室自身稳定性[13-15],但即使锚固后的洞室围岩(以下简称“锚固围岩”)在重分布应力较大时也会进入塑性状态,当应变值较大时同样会进入塑性残余状态。目前考虑刚度与强度参数同时劣化的洞室锚固围岩弹塑性分析还鲜有涉及,因此本文基于D-P屈服准则,考虑刚度劣化、强度劣化、中间主应力等因素后建立了洞室锚固围岩的弹塑性解,并对相关影响因素进行具体分析,为指导工程设计施工提供依据。
1. 理论分析模型
1.1 深埋圆形洞室力学模型
洞室开挖时的假定条件如下:①围岩为各向同性均质围岩;②洞室埋深足够深,开挖断面为圆形,开挖半径为R0;③原岩应力场为P0;④锚杆长度L大于塑性区范围。力学模型如图 1所示,在锚杆支护状态下围岩分为4个区域,分别为普通弹性区(区域Ⅰ)、锚固弹性区(区域Ⅱ,半径为RL)、塑性软化区(区域Ⅲ,半径为Rp)、塑性残余区(区域Ⅳ,半径为Rb),存在如下关系:RL-R0=L,L为锚杆长度。
1.2 锚固围岩力学参数
在研究锚杆对围岩的加固作用时经常将锚杆加固后的岩体看成是等效复合岩体,借助参数等效原则通过引入锚杆密度因子[13]得到复合岩体刚度与强度参数[14-15]:
Es=Eaπr2b+E0(slsr−πr2b)slsr, (1a) φs=arcsin[(1+sinφ0)α+2sinφ0(1+sinφ0)α+2], (1b) cs=c(1+α)(1−sinφ0)cosφa(1−sinφa)cosφ0。 (1c) 式中:Es,Ea,E0分别为复合岩体、锚杆、围岩弹性模量;sl,sr分别为锚杆纵向、环向间距;rb为锚杆半径;α为锚杆密度因子,且α=[2πrbtan(φ/2)]/(slsr);c,φ为围岩自身的黏聚力和内摩擦角。
1.3 D-P屈服准则与围岩劣化模型
Drucker-Prager屈服准则既考虑了中间主应力对屈服与破坏的影响,又考虑了静水压力的影响,已广泛应用于岩石力学中,其屈服函数为[16]
f(I1, √J2)=√J2−αI1−k=0。 (2) 式中:I1与J2分别为应力张量第一不变量和应力偏张量第二不变量(压应力为正、拉应力为负),I1=σθ+σz+σr;J2=[(σθ−σz)2+(σθ−σr)2+(σz−σr)2]/6。α和k为D-P准则材料常数,与强度参数c,φ之间存在如下关系:α=2sinφ/[30.5(3-sinφ)];k=6ccosφ/[30.5(3-sinφ)]。引入中间主应力系数n来反映σ2与最小主应力σ3和最大主应力σ1之间的关系,并令n=(σ2−σ3)/(σ1−σ3),将n代入I1与J2后,再代入式(2),可得到
f=σθ−NMσr−kM=0 。 (3) 式中:M=m-nα−α;N=m-nα+2α;m=[(n2-n+1)/3]0.5。
如图 2所示,当围岩处于弹性阶段时,黏聚力c、内摩擦角φ、弹性模量E均可以取峰值,将c,φ代入D-P准则,得到材料常数α和k后便可以得到弹性阶段的屈服准则表达式;当等效应变的累积值达到产生塑性变形时的临界值时围岩开始进入塑性软化阶段,此时黏聚力、内摩擦角、弹性模量均取软化值c'、φ'、E',通过c',φ'求得α′,k'后代入式(3)便可得到塑性软化阶段的屈服准则表达式;当围岩进入塑性残余阶段时,黏聚力、内摩擦角、弹性模量均取残余值c"、φ"、E",通过c"、φ"求得α″、k"后代入式(3)便可得到塑性残余阶段的屈服准则表达式。
1.4 塑性围岩扩容规律
当塑性区内的锚固围岩等效应变小于 \varepsilon _{\text{b}}^{} εb时流动法则如式(4)所示,式中η1为扩容系数。假设岩石塑性变形服从非关联流动法则,令塑性势函数g等于屈服函数f,将f中的内摩擦角φ替换成剪胀角ψ即可得到g的表达式[16]:
\varepsilon _r^{\text{p}} + {\eta _1}\varepsilon _\theta ^{\text{p}} = 0 。 (4) 由塑性位势理论可知
\text{d}{\varepsilon }_{ij}^{\text{p}}=\text{d}\lambda \frac{\partial g}{\partial {{\boldsymbol{\sigma}} }_{ij}}\text{ }。 (5) 式中:g为塑性势函数; {\text{d}}\varepsilon _{ij}^{\text{p}} 为塑性应变增量; {\sigma _{ij}} 为应力张量; {\text{d}}\lambda 为与塑性势函数相关联的比例系数,0≤ {\text{d}}\lambda 。
根据式(5)有
\left. \begin{array}{l}\text{d}{\varepsilon }_{\theta }^{\text{p}}=\text{d}\lambda \frac{\partial {g}_{\text{p}}}{\partial {\sigma }_{\theta }}=\text{d}\lambda \text{ }\text{, }\\ \text{d}{\varepsilon }_{r}^{\text{p}}=\text{d}\lambda \frac{\partial {g}_{\text{p}}}{\partial {\sigma }_{r}}=-\text{d}\lambda \frac{{n}_{\psi }}{{m}_{\psi }}\text{ }。\end{array} \right\} (6) 式中: {m_\psi } =(9+3 \mu _\sigma ^{\text{2}} )0.5-3 {\alpha _\psi }\mu _\sigma ^{} -9 {\alpha _\psi } ; {n_\psi } =(9+3 \mu _\sigma ^{\text{2}} )0.5-3 {\alpha _\psi }\mu _\sigma ^{} +9 {\alpha _\psi } ; {\alpha _\psi } =sinΨ/[(9+sin2Ψ)0.5]。
定义扩容系数 {\eta _1} 为最小塑性主应变与最大塑性主应变之比,根据上面推导可以得到 {\eta _1} = {n_\psi } / {m_\psi } 。当塑性区内的部分锚固围岩等效应变大于 \varepsilon _{\text{b}}^{} 时,这部分锚固围岩便进入塑性残余状态,此时考虑扩容的流动法则为
\varepsilon _r^{\text{b}} + {\eta _2}\varepsilon _\theta ^{\text{b}} = 0 \text{, } (7) 式中, {\eta _2} 为塑性残余区的扩容系数,可令 {\eta _2} =1+μ,μ多介于0.3~0.5,因此 {\eta _2} 取1.3~1.5。
2. 洞室围岩弹塑性分析
2.1 基本方程
平衡微分方程(不计体力)为
\frac{\text{d}{\sigma }_{r}}{\text{d}r}+\frac{{\sigma }_{r}-{\sigma }_{\theta }}{r}=0\text{ }。 (8) 几何方程为
{\varepsilon _r} = \frac{{{\text{d}}u}}{{{\text{d}}r}};{\varepsilon _\theta } = \frac{u}{r} 。 (9) 本构方程(平面应变):
\left. \begin{array}{c}{\varepsilon }_{r}=\frac{1-{\nu }^{2}}{E}\left({\sigma }_{r}-\frac{\nu }{1-\nu }{\sigma }_{\theta }\right)\text{ }\text{, }\\ {\varepsilon }_{\theta }=\frac{1-{\nu }^{2}}{E}\left({\sigma }_{\theta }-\frac{\nu }{1-\nu }{\sigma }_{r}\right)\text{ }。\end{array} \right\} (10) 式中:u为径向位移;r为极径;E为弹性模量; \nu 为泊松比。
2.2 弹性区分析
根据拉梅应力计算公式以及弹性区边界条件:r→∞时, \sigma _r^{\text{e}} =P0;r=Rp时令 \sigma _r^{\text{e}} =σR,满足 \sigma _\theta ^{} + \sigma _r^{} =2P0,可得非锚固弹性区应力为
\left. \begin{array}{c}{\sigma }_{r}^{\text{e}}={P}_{0}+\frac{{P}_{0}\text{(}M-N\text{)}-k}{M+N}{\left(\frac{{R}_{\text{p}}}{r}\right)}^{2}\text{ }\text{, }\\ {\sigma }_{\theta }^{\text{e}}={P}_{0}-\frac{{P}_{0}(M-N)-k}{M+N}{\left(\frac{{R}_{\text{p}}}{r}\right)}^{2}\text{ }。\end{array} \right\} (11) 由式(11)可得非锚固区与锚固区(r=RL)处的应力表达式为
\left. \begin{array}{c}{\sigma }_{r}^{\text{e}}|{}_{r={R}_{\text{L}}}={P}_{0}+\frac{{P}_{0}(M-N)-k}{M+N}{\left(\frac{{R}_{\text{p}}}{{R}_{\text{L}}}\right)}^{2}\text{ }\text{, }\\ {\sigma }_{\theta }^{\text{e}}|{}_{r={R}_{\text{L}}}={P}_{0}-\frac{{P}_{0}(M-N)-k}{M+N}{\left(\frac{{R}_{p}}{{R}_{\text{L}}}\right)}^{2}\text{ }。\end{array} \right\} (12) 锚固弹性区围岩可以看成内外受径向应力的圆环,如图 3所示,p2为锚固区与非锚固区交界处(r=RL)的径向应力,p1为弹塑性交界面处(r=Rp)的径向应力,因此锚固围岩应力表达式可以写成[17]
\left. \begin{array}{c}{\sigma }_{r}^{\text{e}}=-\frac{A}{{r}^{2}}+C\text{ }\text{, }\\ {\sigma }_{\theta }^{\text{e}}=\frac{A}{{r}^{2}}+C\text{ }。\end{array} \right\} (13) 式中: A=\frac{\text{(}{\sigma }_{{R}_{\text{L}}}-{\sigma }_{{R}_{\text{p}}}\text{)}{R}_{\text{L}}^{2}\cdot {R}_{\text{p}}^{2}}{{R}_{\text{L}}^{2}-{R}_{\text{p}}^{2}},C=\frac{{\sigma }_{{R}_{\text{L}}}{R}_{\text{L}}^{\text{2}}-{\sigma }_{{R}_{\text{p}}}{R}_{\text{p}}^{2}}{2\text{(}{R}_{\text{L}}^{2}-{R}_{\text{p}}^{2}\text{)}} 。
此处,求 {\sigma _{{R_{\text{L}}}}} 时采用的强度参数为非锚固围岩的强度参数,求 {\sigma _{{R_{\text{p}}}}} 时采用的强度参数为锚固围岩的强度参数。
根据本构方程,减去应力分量中的原岩应力成分后,由式(10),(13)可得锚固围岩弹性区应变分布为
\left. \begin{array}{l}{\varepsilon }_{r}^{\text{e}}=\frac{1+\nu }{E}\left[-\frac{A}{{r}^{2}}+(2C-{P}_{0})\cdot (1-2\nu )\right]\text{ }\text{, }\\ {\varepsilon }_{\theta }^{\text{e}}=\frac{1+\nu }{E}\left[\frac{A}{{r}^{2}}+(2C-{P}_{0})\cdot (1-2\nu )\right]\text{ }。\text{ }\end{array} \right\} (14) 根据几何方程及式(14)可以得到锚固弹性区内围岩的位移量为
u_r^{\text{e}} = \frac{{1 + \nu }}{E}\left[ {\frac{A}{r} + (2C - {P_0}) \cdot (1 - 2\nu )r} \right] 。 (15) 2.3 塑性区分析
(1)塑性软化区
当等效应变大于 \varepsilon _{}^{\text{p}} 且小于 \varepsilon _{}^{\text{b}} 时锚固围岩进入塑性软化阶段,此时塑性软化区内总应变为 \varepsilon _r^{} = {(\varepsilon _r^{\text{e}})_{r{\text{ = }}{R_{\text{p}}}}} + \varepsilon _r^{\text{p}} ; \varepsilon _\theta ^{} = {(\varepsilon _\theta ^{\text{e}})_{r{\text{ = }}{R_{\text{p}}}}} + \varepsilon _\theta ^{\text{p}} 。根据式(4),(14)可以得到塑性软化区的位移协调方程为
\frac{{{\text{d}}u}}{{{\text{d}}r}} + {\eta _1}\frac{u}{r} = \varepsilon _r^{\text{e}}\left| {_{r = {R_{\text{p}}}}} \right. + {\eta _1}\varepsilon _\theta ^{\text{e}}\left| {_{r = {R_{\text{p}}}}} \right. 。 (16) 解式(16)微分方程,并利用边界条件r=Rp时u=[(1+ \nu )/E][(A/Rp)+(2C-P0)(1-2 \nu )Rp]可以得到锚固围岩塑性软化区位移为
\begin{array}{l} u_r^{\text{p}} = \frac{{1 + \nu }}{E} \cdot \frac{2}{{{\eta _1} + 1}} \cdot \frac{A}{{R_{\text{p}}^2}} \cdot r \times {\left( {\frac{{{R_{\text{p}}}}}{r}} \right)^{{\eta _1} + 1}} + \\ \ \ \ \ \ \frac{{1 + \nu }}{E}\left( {\frac{{{\eta _1} - 1}}{{{\eta _1} + 1}} \cdot \frac{A}{{R_{\text{p}}^{\text{2}}}} + (2C - {P_0})(1 - 2\nu )} \right) \cdot r 。 \end{array} (17) 根据式(17),(9)可以得到塑性软化区应变为
\begin{array}{l} \varepsilon _r^{\text{p}} = - {\eta _1}\frac{{1 + \nu }}{E} \cdot \frac{2}{{{\eta _1} + 1}} \cdot \frac{A}{{R_{\text{p}}^{\text{2}}}} \cdot {\left( {\frac{{{R_{\text{p}}}}}{r}} \right)^{{\eta _1} + 1}} +\\ \ \ \ \ \ \frac{{1 + \nu }}{E}\left( {\frac{{{\eta _1} - 1}}{{{\eta _1} + 1}} \cdot \frac{A}{{R_{\text{p}}^{\text{2}}}} + (2C - {P_0})(1 - 2\nu )} \right) \text{, } \end{array} (18a) \begin{array}{l} \varepsilon _\theta ^{p} = \frac{{1 + \nu }}{E} \cdot \frac{2}{{{\eta _1} + 1}} \cdot \frac{A}{{R_{\text{p}}^{\text{2}}}} \cdot {\left( {\frac{{{R_{\text{p}}}}}{r}} \right)^{{\eta _1} + 1}} + \\ \ \ \ \ \ \frac{{1 + \nu }}{E}\left( {\frac{{{\eta _1} - 1}}{{{\eta _1} + 1}} \cdot \frac{A}{{R_{\text{p}}^{\text{2}}}} + (2C - {P_0})(1 - 2\nu )} \right) 。 \end{array} (18b) 软化区内围岩应力满足式(8)及式(3),联立两式及边界条件r=Rp时 \sigma _R^{p} = \sigma _R^{\text{e}} ,可得软化区应力计算公式为
\sigma _r^{\text{p}} = \left( {\frac{{2M'{P_0} - k}}{{M' + N'}} - \frac{{k'}}{{M' - N'}}} \right) \cdot {\left( {\frac{{{R_{\text{p}}}}}{r}} \right)^{\frac{{M' - N'}}{{M'}}}} + \frac{{k'}}{{M' - N'}} \text{, } (19a) \sigma _\theta ^{\text{p}} = \frac{{N'}}{{M'}}\left[ {\frac{{2M'{P_0} - k}}{{M' + N'}} - \frac{{k'}}{{M' - N'}}} \right] \cdot {\left( {\frac{{{R_{\text{p}}}}}{r}} \right)^{\frac{{M' - N'}}{{M'}}}} + \frac{{k'}}{{M' - N'}} 。 (19b) (2)塑性残余区
当等效应变大于 \varepsilon _{\text{b}}^{} 时锚固围岩进入塑性残余阶段,此时的锚固围岩满足式(8)及式(3),联立两式及边界条件r=R0时 \sigma _r^{\text{b}} = {p_i} 可以得到破碎区应力为
\sigma _r^{\text{b}} = \left( {{p_i} - \frac{{k''}}{{M'' - N''}}} \right) \cdot {\left( {\frac{{{R_0}}}{r}} \right)^{\frac{{M'' - N''}}{{M''}}}} + \frac{{k''}}{{M'' - N''}} \text{, } (20a) \sigma _r^{\text{b}} = \frac{{N''}}{{M''}}\left( {{p_i} - \frac{{k''}}{{M'' - N''}}} \right) \cdot {\left( {\frac{{{R_0}}}{r}} \right)^{\frac{{M'' - N''}}{{M''}}}} + \frac{{k''}}{{M'' - N''}} 。 (20b) 锚固围岩塑性残余区总应变为 \varepsilon _r^{\text{b}} = {(\varepsilon _r^{\text{p}})_{r{\text{ = }}{R_{\text{b}}}}} + \varepsilon _r^{\text{b}} , \varepsilon _\theta ^{\text{b}} = {(\varepsilon _\theta ^{\text{p}})_{r{\text{ = }}{R_{\text{b}}}}} + \varepsilon _\theta ^{\text{b}} 。根据式(7),(18)有
\frac{{{\text{d}}u}}{{{\text{d}}r}} + {\eta _2}\frac{u}{r} = \varepsilon _r^{\text{p}}\left| {_{r = {R_{\text{b}}}}} \right. + {\eta _2}\varepsilon _\theta ^{\text{p}}\left| {_{r = {R_{\text{b}}}}} \right. 。 (21) 解式(21)微分方程,并且利用r=Rb时的边界条件可以得到软化区位移为
u_r^{\text{b}} = \frac{{{\eta _1} + 1}}{{{\eta _2} + 1}}{S_1} \cdot r{\left( {\frac{{{R_{\text{b}}}}}{r}} \right)^{{\eta _2} + 1}} + \left( {\frac{{{\eta _2} - {\eta _1}}}{{{\eta _2} + 1}}{S_1} + {S_2}} \right) \cdot r 。 (22) 式中,
{S_1} = \frac{{1 + \nu }}{{E''}} \cdot \frac{2}{{{\eta _1} + 1}} \cdot {\left( {\frac{{{R_{\text{p}}}}}{{{R_{\text{b}}}}}} \right)^{{\eta _1} + 1}} \text{, } {S_2} = \frac{{1 + \nu }}{{E''}}\left[ {\frac{{{\eta _1} - 1}}{{{\eta _1} + 1}} \cdot \frac{A}{{R_{\text{p}}^{\text{2}}}} + (2C - {P_0})(1 - 2\nu )} \right] 。 2.4 软化区和残余区半径
当r= {R_{\text{b}}} 时, \sigma _r^{p} = \sigma _r^b ,联立软化区与残余区的径向应力公式可得
{R}_{\text{p}}={R}_{0}\cdot {\left\{\frac{\left[{p}_{i}-{k}^{″}/({M}^{″}-{N}^{″})\right]}{(2{M}^{″}{P}_{0}-{k}^{″})/({M}^{″}+{N}^{″})-{k}^{″}/({M}^{″}-{N}^{″})}\right\}}^{\frac{{M}^{″}}{{M}^{″}-{N}^{″}}}。 (23) 根据式(18),(23)可以求得塑性区内的塑性应变量,联立塑性软化区c'的求解公式可以得到塑性软化区内强度参数的软化值。当r=Rb时,软化区的锚固围岩强度参数软化至残余强度参数,此时可以得到
c' = {c_0} - {M_{\text{c}}}\left( {\varepsilon _\theta ^{\text{p}}\left| {_{{R_{\text{p}}} \leqslant r \leqslant {R_{\text{b}}}}} \right. - \varepsilon _\theta ^{\text{e}}\left| {_{r = {R_{\text{p}}}}} \right.} \right) \text{, } (24a) \varphi ' = {\varphi _0} - {M_\varphi }\left( {\varepsilon _\theta ^{\text{p}}\left| {_{{R_{\text{p}}} \leqslant r \leqslant {R_{\text{b}}}}} \right. - \varepsilon _\theta ^{\text{e}}\left| {_{r = {R_{\text{p}}}}} \right.} \right) 。 (24b) 根据式(24)便可以求出塑性残余区半径:
{R_{\text{b}}} = {R_{\text{p}}}/{\left\{ {\frac{{({c_0} - {{c''}_{s} })({\eta _1} + 1)E'' \cdot R_{\text{p}}^2}}{{2A{M_{\text{c}}} \cdot (1 + \nu )}} + 1} \right\}^{\frac{1}{{{\eta _1} + 1}}}} 。 (25) 3. 算例验证与参数分析
3.1 算例验证
采用FLAC3D有限差分软件对理论公式进行验证,数值计算模型如图 4所示,模型尺寸为90 m×90 m×5 m,计算过程中围岩采用应变软化模型,参数如表 1所示。锚杆长度为5 m,纵向、环向间距均为1.2 m,计算过程中将锚杆对围岩的加固作用看作是对围岩刚度及强度参数的提高,按式(1)进行计算。
表 1 围岩计算参数Table 1. Parameters for surrounding rock状态 弹性模量E/MPa 黏聚力c/MPa 内摩擦角φ/(°) 泊松比 \nu 黏聚力软化模量Mc/MPa 内摩擦角软化模量Mc/(°) 支护反力pi/MPa 原岩应力P0/MPa 初始值 2000 4 35 残余值 1000 1.6 20 0.2 400 1800 0.8 15 根据围岩残余强度参数的不同取值分为4种工况,计算结果如表 2,图 5所示。由表 2中的数据可知当残余强度取值越小时得到的塑性区半径及洞壁位移均越大。4种工况下理论计算结果均略大于数值模拟计算结果,但基本吻合,其中工况一时通过理论计算、数值计算得到的洞壁位移均在0.05 m左右,工况四时通过理论计算、数值计算得到的洞壁位移均在0.22 m左右。
表 2 理论解与数值解计算结果对比Table 2. Comparison between theoretical and numerical solutions工况 工况一 工况二 工况三 工况四 围岩残余强度参数 c"/MPa φ"/(°) c"/MPa φ"/(°) c"/MPa φ"/(°) c"/MPa φ"/(°) 4 35 3.2 30 2.4 25 1.6 20 Rp/R0 本文解 1.164 1.264 1.540 1.855 FLAC-3D 1.163 1.261 1.538 1.850 洞壁位移u/m 本文解 0.052 0.091 0.159 0.223 FLAC-3D 0.050 0.088 0.157 0.214 3.2 中间主应力对Rp,Rb,及u的影响
图 6为中间主应力系数n对Rp/R0、Rb/R0的影响分析,由图中曲线可知中间主应力系数n为0时Rp/R0,Rb/R0的值最大,此时Rp/R0等于2.16,Rb/R0=1.81。随着n的逐渐增大Rp/R0,Rb/R0均产生一定程度的降低,当n达到0.7~0.8时Rp/R0,Rb/R0均达到最低值,此时Rp/R0=1.38,Rb/R0=1.11。此后n从0.8增大到1.0时Rp/R0与Rb/R0均有一定程度的增长,但增长幅值较小,图 6中数据显示n等于1.0时Rp/R0与Rb/R0分别为1.43,1.15。此外从图 6中数据可以看出n从0增大到1的过程中,残余区范围占塑性区范围的比重变化不大,均在15%左右。
图 7为中间主应力系数n对洞壁(r=R0)位移u的影响分析。由图 7中曲线可知中间主应力系数n为0时洞壁位移值u最大,达到0.223 m,此后随着中间主应力系数n的逐渐增大u快速下降,当n达到0.7~0.8时洞壁位移值u达到最小值,此时u等于0.07 m。此后n从0.8增大到1.0的过程中洞壁位移值有一定程度的增长,图 7中数据显示n=1.0时,u=0.075 m。
3.3 残余黏聚力c"、残余内摩擦角φ"对Rp,Rb及u的影响
图 8为残余黏聚力c"取不同值时对Rp/R0、Rb/R0的影响分析。由图 8中曲线可知残余黏聚力c"取值越小时得到的塑性软化区范围、塑性残余区范围越大,当c"取值较小时曲线c"-Rp/R0与曲线c"-Rb/R0的斜率越大,即c"取值较小时相同增量的Δc得到的ΔRp/R0,ΔRb/R0会更大。黏聚力软化模量Mc的取值对Rp/R0无影响,但会对Rb/R0产生较大影响,同一c"对应的Mc值越大时得到的Rb/R0越大,以图 8中数据为例,黏聚力软化模量每增大100 MPa时塑性残余区半径便会增加0.5 m左右。
图 9为残余黏聚力c"取不同值时对洞壁位移u的影响分析。由图 9中数据可以看出Mc取值大小对洞壁位移u无影响,但黏聚力残余值的大小对洞壁位移u的影响较大,c"取1.6 MPa时,洞壁位移u为0.075 m,此后随着c"的逐渐增大,洞壁位移逐渐减小。
图 10为残余内摩擦角φ"取不同值时对Rp/R0、Rb/R0的影响分析。由图 10中曲线可知残余内摩擦角φ"取值越小时得到的塑性软化区范围、塑性残余区范围越大,当φ"取值较小时曲线c"-Rp/R0与曲线c"-Rb/R0的斜率越大,即当φ"取值越小时相同增量的Δφ得到的ΔRp/R0,ΔRb/R0会更大。此外,内摩擦角软化模量Mφ的取值对Rp/R0无影响,对Rb/R0影响较大,当Mφ取值越大时得到的Rb/R0越大。
图 11为残余内摩擦角φ"取不同值时对洞壁位移u的影响分析。由图 11中曲线可知,Mφ的取值大小对洞壁位移u无影响,残余内摩擦角φ"越小时洞壁位移u的值越大,残余内摩擦角φ"从30°降低至25°时洞壁位移u增大了0.009 m,残余内摩擦角φ"从25°降低至20°时洞壁位移u增大了0.029 m。由此可以看出残余内摩擦角的取值对围岩变形至关重要。
3.4 残余弹性模量E"对Rp,Rb,及u的影响
图 12为复合岩体残余弹性模量E"对Rp/R0,Rb/R0的影响分析。由图 12中曲线可知E"的取值对Rp/R0没有影响,但E"的取值对Rb/R0会产生较大影响。由图中数据可以看出当E"取2000 MPa时Rp/R0等于1.025,当E"取1200 MPa时Rp/R0等于1.161,两者相比锚固塑性残余区增大了12%;当E"等于600 MPa时的Rp/R0与E"等于1200 MPa时相比,弹性模量降低了60%,锚固塑性残余区增大了25%。
图 13为复合岩体残余弹性模量E"对洞壁位移u的影响,由式(22)计算可知,当E"取2000 MPa时u等于0.076 m,当E"等于1000 MPa时u等于0.155 m,可以看出考虑弹性模量的劣化得到的洞壁位移u比没有考虑弹性模量的劣化得到的洞壁位移u要大,此外此外E"从1000 MPa降低到600 MPa时,洞壁位移u又有一定程度的下降,当E"等于400 MPa时u达到0.251 m。
3.5 锚杆与pi协调作用对围岩Rp,Rb,u的控制效果
图 14,15为锚杆与支护抗力 {p_{\text{i}}} 协调作用下对围岩塑性区的控制效果,本小节分析时锚杆纵向间距取1.2 m,对横向间距取不同值时的工况进行对比。由图 14,15中曲线可知同一支护阻力条件下锚杆横向间距从2.0 m下降到1.2 m时锚固塑性软化区半径、锚固塑性残余区半径分别下降了0.38,0.47 m;锚杆间距从1.2 m下降到0.8 m时锚固塑性软化区半径、锚固塑性残余区半径分别下降了0.57,0.63 m左右,因此在对围岩锚固时建议将锚杆间距控制在1.2 m以内,可以使得锚固效果更明显。同一锚杆间距时适当增大支护阻力有利于控制锚固软化区、锚固残余区范围的扩大。以锚杆纵、横向间距为1.2 m为例,支护抗力从0.6 MPa增大到1.4 MPa时锚固塑性软化区半径、锚固残余区半径分别下降了0.60,0.50 m左右。此外,从图 14,15中还可以看出增大相同的支护抗力Δpi时,锚杆间距越小时对锚固塑性软化区、锚固塑性残余区的控制效果越好。
图 16为锚杆与支护阻力 {p_{\text{i}}} 协调作用下的洞壁围岩位移u,分析时锚杆纵向间距取1.2 m,对横向间距取不同值时的工况进行对比。由图中数据可知当锚杆间距一定时支护阻力 {p_{\text{i}}} 越大,洞壁位移u越小;支护阻力 {p_{\text{i}}} 一定时锚杆间距越小对洞壁位移的控制效果越好。当锚杆间距较大时,增大一定程度的支护阻力会有效控制围岩变形,以锚杆间距2 m为例,支护阻力从0.6 MPa增大到1.2 MPa后,洞壁围岩变形下降了20%,以锚杆横向间距取0.8 m为例,支护阻力从0.6 MPa增大到1.2 MPa后,洞壁围岩变形只下降了11%。因此在控制围岩变形时,需要协调锚杆间距与支护抗力的作用,以此来达到控制变形的效果。
4. 结论
本文基于D-P屈服准则得到了考虑刚度与强度同时劣化的深埋圆形洞室锚固围岩弹塑性解,借助FLAC3D有限差分软件验证了该方法的可靠性,并对相关影响因素进行具体分析,得出以下4点结论。
(1)对洞室锚固围岩进行弹塑性分析时适当考虑刚度参数的劣化后,得到的塑性区残余区分布范围与围岩变形量更符合实际。
(2)适当考虑围岩中间主应力的作用后得到的塑性软化区半径Rp、塑性残余区半径Rb、洞壁位移u均有较明显的下降。
(3)残余黏聚力c"、残余内摩擦角φ"、残余弹性模量E"、黏聚力软化模量Mc、内摩擦角软化模量Mφ的取值对塑性软化区半径Rp无影响,对塑性残余区半径Rb、洞壁位移u的影响较大,当c"、φ"、E"取值越小时得到的Rb、u越大,当Mc、Mφ取值越大时得到的Rb、u越大。
(4)系统锚杆与支护阻力 {p_{\text{i}}} 协调作用下可以有效控制塑性残余区范围及围岩变形,建议将锚杆间距控制在1.2 m以内,当支护阻力一定时适当缩小锚杆间距可有效降低围岩变形量。
-
图 1 水合物实物与分子结构图[2]
Figure 1. Physical and molecular structural diagrams of hydrate
图 3 水合物理论稳定区域与生成区域的空间关系示意图[26]
Figure 3. Schematic diagram of spatial relationship between hydrate stability zone and hydrate formation zone
图 6 水合物开采影响下典型海底斜坡稳定性评价示意图[32]
Figure 6. Schematic diagram of stability evaluation of typical submarine slope under influences of hydrate exploitation
图 8 先导井测井响应柱状图[41]
Figure 8. Histogram logging response of pilot well
参数 取值 单位 坡体参数 z (深度) — m α (坡度) 3 ° H(水平井位置) 230.6 m 地层参数 T0(海底温度) 3.5 ℃ G/(地热梯度) 56 K/km Sh (初始饱和度) 31 % k (渗透率) 2.38 mD κ (有效热扩散系数) 4.5×10−7 m2/s λ (有效导热系数) 3.66 W/(m·K) c1′ (初始黏聚力) 800 kPa c2′ (最终黏聚力) 30 kPa φ′ (内摩擦角) 8.03 ° ρ (体密度) 1650 kg/m3 ϕ (孔隙度) 0.37 m3/m3 通用参数 ρl/(液相密度) 1024 kg/m3 ρh (水合物密度) 930 kg/m3 Cpl (液体比热) 4.18×103 J/(kg·K) Cph/(水合物比热) 2.16×103 J/(kg·K) μl (液体动态黏度) 8.87×10−4 kg/(m·s) S (液体盐度) 3.5 % Lh/(水合物潜热) 56552-16.8/T J/kg -
[1] KVENVOLDEN K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173–187. doi: 10.1029/93RG00268
[2] SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353–363. doi: 10.1038/nature02135
[3] BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4–30. doi: 10.1016/j.marpetgeo.2011.10.003
[4] FUJII T, SUZUKI K, TAKAYAMA T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 310–322. doi: 10.1016/j.marpetgeo.2015.02.037
[5] 萧惠中, 张振. 全球主要国家天然气水合物研究进展[J]. 海洋开发与管理, 2021, 38(1): 36–41. doi: 10.3969/j.issn.1005-9857.2021.01.006 XIAO Hui-zhong, ZHANG Zhen. A review on gas hydrates research progress of global main countries[J]. Ocean Development and Management, 2021, 38(1): 36–41. (in Chinese) doi: 10.3969/j.issn.1005-9857.2021.01.006
[6] 王力峰, 付少英, 梁金强, 等. 全球主要国家水合物探采计划与研究进展[J]. 中国地质, 2017, 44(3): 439-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703004.htm WANG Li-feng, FU Shao-ying, LIANG Jin-qiang, et al. A review on gas hydrate developments propped by worldwide national projects[J]. Geology in China, 2017, 44(3): 439-448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703004.htm
[7] 袁益龙. 海洋天然气水合物降压开采潜力及力学稳定性数值模拟研究[D]. 长春: 吉林大学, 2019. YUAN Yi-long. Numerical Simulation on Gas Production Potential and the Geo-Mechanical Stability From Marine Natural Gas Hydrate Through Depressurization[D]. Changchun: Jilin University, 2019. (in Chinese)
[8] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 1–24, 203. doi: 10.3787/j.issn.1000-0976.2020.08.001 NING Fu-long, LIANG Jin-qiang, WU Neng-you, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020, 40(8): 1–24, 203. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.001
[9] 张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670–680. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705003.htm ZHANG Wei, LIANG Jin-qiang, LU Jin-gan, et al. Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea[J]. Petroleum Exploration and Development, 2017, 44(5): 670–680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705003.htm
[10] WANG J L, WU S G, KONG X, et al. Geophysical characterization of a fine-grained gas hydrate reservoir in the Shenhu area, northern South China Sea: integration of seismic data and downhole logs[J]. Marine and Petroleum Geology, 2018, 92: 895–903. doi: 10.1016/j.marpetgeo.2018.03.020
[11] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557–568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm YE Jian-liang, QIN Xu-wen, XIE Wen-wei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557–568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm
[12] LI A, DAVIES R J, YANG J X. Gas trapped below hydrate as a primer for submarine slope failures[J]. Marine Geology, 2016, 380: 264–271. doi: 10.1016/j.margeo.2016.04.010
[13] NIAN T K, SONG X L, ZHAO W, et al. Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation[J]. Environmental Geotechnics, 2022, 9(2): 108–123. doi: 10.1680/jenge.19.00070
[14] JIANG M J, SUN C, CROSTA G B, et al. A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach[J]. Engineering Geology, 2015, 190: 1–16. doi: 10.1016/j.enggeo.2015.02.007
[15] NIXON M F, LH G J. Submarine slope failure due to gas hydrate dissociation: a preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44(3): 314–325. doi: 10.1139/t06-121
[16] XIONG Z S, ZHANG J H. Effect of dissociation of gas hydrate on the stability of submarine slope[C]//31st ASME International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, 2012.
[17] ZHANG H T, LUO X Q, BI J F, et al. Submarine slope stability analysis during natural gas hydrate dissociation[J]. Marine Georesources & Geotechnology, 2019, 37(4): 467–476.
[18] CHEN Y M, ZHANG L L, LIAO C C, et al. A two-stage probabilistic approach for the risk assessment of submarine landslides induced by gas hydrate exploitation[J]. Applied Ocean Research, 2020, 99: 102158. doi: 10.1016/j.apor.2020.102158
[19] 刘锋, 吴时国, 孙运宝. 南海北部陆坡水合物分解引起海底不稳定性的定量分析[J]. 地球物理学报, 2010, 53(4): 946–953. doi: 10.3969/j.issn.0001-5733.2010.04.019 LIU Feng, WU Shi-guo, SUN Yun-bao. A quantitative analysis for submarine slope instability of the northern South China Sea due to gas hydrate dissociation[J]. Chinese Journal of Geophysics, 2010, 53(4): 946–953. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.04.019
[20] GROZIC J L H. Interplay Between gas hydrates and submarine slope failure[C]// Submarine Mass Movements and Their Consequences-4th International Symposium, Dordrecht, 2010.
[21] ZHU C Q, JIA Y G. Submarine slope stability analysis during natural gas hydrate dissociation: Discussion[J]. Marine Georesources & Geotechnology, 2020, 38(6): 753–754.
[22] ARCHER D, BUFFETT B, BROVKIN V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596–20601. doi: 10.1073/pnas.0800885105
[23] XU W Y, RUPPEL C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 5081–5095. doi: 10.1029/1998JB900092
[24] SLOAN E D, KOH C A. Clathrate Hydrates of Natural Gases[M]. 3ir ed. New York: Marcel Dekker, 2008.
[25] DAVIE M K, ZATSEPINA O Y, BUFFETT B A. Methane solubility in marine hydrate environments[J]. Marine Geology, 2004, 203(1/2): 177–184.
[26] MESTDAGH T, POORT J, DE B M. The sensitivity of gas hydrate reservoirs to climate change: perspectives from a new combined model for permafrost-related and marine settings[J]. Earth-Science Reviews, 2017, 169: 104–131. http://hal.sorbonne-universite.fr/hal-01521071/document
[27] WAITE W F, STERN L A, KIRBY S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in SI methane hydrate[J]. Geophysical Journal International, 2007, 169(2): 767–774. doi: 10.1111/j.1365-246X.2007.03382.x
[28] HU H, ARGYROPOULOS S A. Mathematical modelling of solidification and melting: a review[J]. Modelling and Simulation in Materials Science and Engineering, 1996, 4(4): 371–396. doi: 10.1088/0965-0393/4/4/004
[29] REAGAN M T, MORIDIS G J. Dynamic response of oceanic hydrate deposits to ocean temperature change[J]. Journal of Geophysical Research Oceans, 2008, 113(C12).
[30] TAN L, LIU F, HUANG Y, et al. Production-induced instability of a gentle submarine slope: potential impact of gas hydrate exploitation with the huff-puff method[J]. Engineering Geology, 2021, 289: 106174.
[31] 蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391–1398. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18686.shtml JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391–1398. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18686.shtml
[32] LIU F, TAN L, CROSTA G, et al. Spatiotemporal destabilization modes of upper continental slopes undergoing hydrate dissociation[J]. Engineering Geology, 2020, 264: 105286.
[33] 邹远晶, 韦昌富, 陈合龙, 等. 基于扰动状态概念的含水合物土弹塑性模型[J]. 岩土力学, 2019, 40(7): 2653–2662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907019.htm ZOU Yuan-jing, WEI Chang-fu, CHEN He-long, et al. Elastic-plastic model for gas-hydrate-bearing soils using disturbed state concept[J]. Rock and Soil Mechanics, 2019, 40(7): 2653–2662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907019.htm
[34] 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1–14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704002.htm YANG Sheng-xiong, LIANG Jin-qiang, LU Jin-gan, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 1–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704002.htm
[35] 年廷凯, 焦厚滨, 范宁, 等. 南海北部陆坡软黏土动力应变-孔压特性试验[J]. 岩土力学, 2018, 39(5): 1564–1572, 1580. NIAN Ting-kai, JIAO Hou-bin, FAN Ning, et al. Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(5): 1564–1572, 1580. (in Chinese)
[36] 年廷凯, 范宁, 焦厚滨, 等. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, 2018, 40(4): 602–611. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17326.shtml NIAN Ting-kai, FAN Ning, JIAO Hou-bin, et al. Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 602–611. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17326.shtml
[37] 蒋明镜, 肖俞, 刘芳. 深海能源土开采对海床稳定性的影响研究思路[J]. 岩土工程学报, 2010, 32(9): 1412–1417. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13601.shtml JIANG Ming-jing, XIAO Yu, LIU Fang. Methodology for assessing seabed instability induced by exploitation of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1412–1417. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13601.shtml
[38] 年廷凯, 沈月强, 郑德凤, 等. 海底滑坡链式灾害研究进展[J]. 工程地质学报, 2021, 29(6): 1657–1675. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106001.htm NIAN Ting-kai, SHEN Yue-qiang, ZHENG De-feng, et al. Research advances on the chain disasters of submarine landslides[J]. Journal of Engineering Geology, 2021, 29(6): 1657–1675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106001.htm
[39] 郑德凤, 雷得浴, 闫成林, 等. 基于Web of Science数据库的海底滑坡研究趋势文献计量分析[J]. 工程地质学报, 2021, 29(6): 1805–1814. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106015.htm ZHENG De-feng, LEI De-yu, YAN Cheng-lin, et al. Global research trends in submarine landslides: a bibliometric analysis based on web of science publications[J]. Journal of Engineering Geology, 2021, 29(6): 1805–1814. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106015.htm
[40] 吴时国, 董冬冬, 杨胜雄, 等. 南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探[J]. 地球物理学报, 2009, 52(7): 1849–1857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907020.htm WU Shi-guo, DONG Dong-dong, YANG Sheng-xiong, et al. Genetic model of the hydrate system in the fine grain sediments in the northern continental slope of South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(7): 1849–1857. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907020.htm
[41] QIN X W, LU J A, LU H, et al. Co-existence of gas hydrate, free gas, and water in gas hydrate reservoir system in Shenhu area[J]. China Geology, 2020, 3(2): 210–220.
[42] 石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3): 521–528. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm SHI Yao-hong, ZHANG Xu-hui, LU Xiao-bing, et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 521–528. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
-
其他相关附件
-
PDF格式
审稿意见与作者答复 点击下载(518KB)
-