• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

压气储能地下储气库衬砌裂缝分布特征及演化规律研究

蒋中明, 甘露, 张登祥, 肖喆臻, 廖峻慧

蒋中明, 甘露, 张登祥, 肖喆臻, 廖峻慧. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究[J]. 岩土工程学报, 2024, 46(1): 110-119. DOI: 10.11779/CJGE20221165
引用本文: 蒋中明, 甘露, 张登祥, 肖喆臻, 廖峻慧. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究[J]. 岩土工程学报, 2024, 46(1): 110-119. DOI: 10.11779/CJGE20221165
JIANG Zhongming, GAN Lu, ZHANG Dengxiang, XIAO Zhezheng, LIAO Junhui. Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 110-119. DOI: 10.11779/CJGE20221165
Citation: JIANG Zhongming, GAN Lu, ZHANG Dengxiang, XIAO Zhezheng, LIAO Junhui. Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 110-119. DOI: 10.11779/CJGE20221165

压气储能地下储气库衬砌裂缝分布特征及演化规律研究  English Version

基金项目: 

国家自然科学基金项目 52178381

国家自然科学基金项目 51778070

详细信息
    作者简介:

    蒋中明(1969—),男,博士,教授,主要从事地下储气库建造技术方面的研究工作。E-mail:zzmmjiang@163.com

  • 中图分类号: TU43

Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage

  • 摘要: 地下储气库衬砌的主要作用是将内压传递给围岩,且同时作为柔性密封层的附着基层。高内压作用下衬砌开裂可导致密封层出现反射型裂缝,进而引起高压气体的泄漏。为深入认识地下储气库衬砌的开裂特征,开发了基于FLAC3D平台的衬砌裂缝分析程序,研究了衬砌配筋方式、配筋率、钢筋保护层厚度、围岩类别和温压循环荷载作用等因素对衬砌开裂演化特征的影响。研究成果表明:对衬砌采取合理的配筋方式和改善围岩质量的措施可有效控制衬砌裂缝的宽度;采用分区配筋的方式可有效控制圆形断面隧洞式储气库衬砌中的最大裂缝宽度,同时降低衬砌的配筋量。空气压力和温度同步变化引起的热力耦合效应还有助于减小衬砌中出现的裂缝宽度。
    Abstract: The liner of underground gas storage cavern is used to transfer the internal pressure to the surrounding rock, and at the same time serves as the base of flexible sealing layer. The excessively wide cracks due to the high internal pressure may lead to generation of reflective cracks in the sealing layer, thus causing the leakage of high-pressure gas. To deeply understand the characteristics of liner cracking in high-pressure underground gas storage cavern, a routine for cracking analysis of a liner based on the FLAC3D platform is developed, and the influences of reinforcement mode and ratio, concrete cover thickness, surrounding rock type and effect of temperature-pressure cyclic loading on cracking evolution characteristics are studied. The research results show that the crack width of the liner can be effectively controlled by reasonable reinforcement of concrete liner and improvement of the surrounding rock quality. For a circular cross-section tunnel gas storage cavern, it is possible to control the maximum crack opening in the liner by differentiated reinforcement mode, so as to reasonably reduce the reinforcement quantity in the liner. The thermo-mechanical coupling effects due to the simultaneous change of compressed air pressure and temperature are helpful to reduce the crack width in the liner.
  • 图  1   计算流程

    Figure  1.   Flow chart of numerical calculation

    图  2   钢衬钢筋混凝土管道结构图

    Figure  2.   Sketch of steel-lined reinforced concrete pipeline

    图  3   第三主应力云图

    Figure  3.   Contours of third principal stress

    图  4   钢衬钢筋混凝土管道裂缝对比图[19]

    Figure  4.   Comparison of cracks in steel liner-reinforced concrete pipeline[19]

    图  5   储气库数值网格

    Figure  5.   Meshs for rock cavern

    图  6   不同配筋方式下裂缝分布图

    Figure  6.   Distribution of cracks under different reinforcement modes

    图  7   保护层厚度与双筋衬砌结构裂缝特征关系

    Figure  7.   Relationship between cracking characteristics of concrete liner with double-layer rebar and thickness of protective layer

    图  8   不同围岩变形模量条件下衬砌裂缝宽度云图

    Figure  8.   Contours of liner crack width under different rock deformation moduli

    图  9   围岩变形模量对衬砌裂缝的影响

    Figure  9.   Influences of rock deformation modulus on crack of concrete liner

    图  10   压力和温度变化过程

    Figure  10.   Change process of pressure and temperature

    图  11   第三主应力云图

    Figure  11.   Contour of third principal stress

    图  12   径向位移分布图

    Figure  12.   Contours of radial displacement

    图  13   塑性区分布图

    Figure  13.   Distribution of plastic zone

    图  14   钢筋受力图

    Figure  14.   Stresses of rebar in concrete liner

    图  15   循环充放气作用下衬砌裂缝宽度云图

    Figure  15.   Contours of liner crack width under action of charge and discharge operation cycles

    图  16   衬砌裂缝宽度变化过程线

    Figure  16.   Variation of crack width with time

    表  1   岩体计算参数

    Table  1   Computational parameters of rock

    计算参数 重度γ/ (kN·m-3) 变形模量E/GPa 泊松比ν 黏聚力c/MPa 内摩擦角φ/(°) 抗拉强度T/MPa 热传导系数/ (W·m-1·K-1) 比热/ (J·kg-1·K-1) 线膨胀系数/(K-1) 换热系数/(W·m-2·K-1)
    围岩 26 18 0.200 1.50 50 2.00 3.00 771 1×10-5
    C30混凝土 25 30 0.167 3.08 55 2.01 1.74 800 1×10-5 6
    下载: 导出CSV

    表  2   钢筋计算参数

    Table  2   Computational parameters for rebar

    弹性模量/ GPa 屈服强度/ MPa 剪切刚度/ GPa
    200 400 10
    下载: 导出CSV

    表  3   计算方案表

    Table  3   Computational schemes

    影响因素 布置方式 钢筋直径/mm 钢筋间距/ mm 保护层厚度/mm 围岩变形模量/ GPa
    基准方案 单层钢筋 22 250 50 18
    对比方案 无钢筋、双层钢筋 16,28,32 125,165 60,70,80,90,100 9,12,15,30
    下载: 导出CSV

    表  4   配筋率与裂缝特征值关系表

    Table  4   Relationship between crack eigenvalue and percentage of reinforcement

    钢筋直径/ mm 钢筋间距/ mm 配筋率/% 平均裂缝宽度/mm 最大裂缝宽度/mm 宏观裂缝条数
    单筋 双筋 单筋 双筋 单筋 双筋 单筋 双筋
    16 125 0.34 0.67 0.639 0.518 1.490 1.287 38 32
    165 0.27 0.54 0.637 0.534 1.623 1.189 39 33
    250 0.20 0.40 0.713 0.584 2.037 1.613 35 33
    22 125 0.63 1.27 0.625 0.507 1.346 1.074 39 29
    165 0.51 1.01 0.624 0.512 1.425 1.171 41 31
    250 0.38 0.76 0.634 0.528 1.709 1.151 38 30
    28 125 1.03 2.05 0.569 0.457 1.046 1.029 41 28
    165 0.82 1.64 0.573 0.490 1.131 1.066 42 30
    250 0.62 1.23 0.590 0.508 1.168 1.112 44 30
    32 125 1.34 2.68 0.584 0.399 1.090 0.711 35 30
    165 1.07 2.14 0.600 0.418 1.096 0.844 38 31
    250 0.80 1.61 0.608 0.429 1.207 0.909 43 31
    下载: 导出CSV
  • [1] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.

    ZHANG Liying, YE Tinglu, XIN Yaozhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9. (in Chinese)

    [2]

    KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock Caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92: 653-667. doi: 10.1016/j.apenergy.2011.07.013

    [3] 夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014, 35(5): 1391-1398.

    XIA Caichu, ZHANG Pingyang, ZHOU Shuwei, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398. (in Chinese)

    [4] 蒋中明, 秦双专, 唐栋. 压气储能地下储气库围岩累积损伤特性数值研究[J]. 岩土工程学报, 2020, 42(2): 230-238. doi: 10.11779/CJGE202002003

    JIANG Zhongming, QIN Shuangzhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock Caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 230-238. (in Chinese) doi: 10.11779/CJGE202002003

    [5]

    JIANG Z M, LI P, TANG D, et al. Experimental and numerical investigations of small-scale lined rock cavern at shallow depth for compressed air energy storage[J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2671-2683. doi: 10.1007/s00603-019-02009-x

    [6] 蒋中明, 李鹏, 赵海斌, 等. 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学, 2020, 41(1): 235-241, 252.

    JIANG Zhongming, LI Peng, ZHAO Haibin, et al. Experimental study on performance of shallow rock cavern for compressed air energy storage[J]. Rock and Soil Mechanics, 2020, 41(1): 235-241, 252. (in Chinese)

    [7] 邓建, 肖明, 陈俊涛. 高压引水隧洞运行期复杂承载过程数值分析[J]. 中南大学学报(自然科学版), 2017, 48(5): 1261-1267.

    DENG Jian, XIAO Ming, CHEN Juntao. Numerical analysis for complex bearing process of high pressure diversion tunnel at runtime[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1261-1267. (in Chinese)

    [8] 苏凯, 王博士, 王文超, 等. 水-温作用下水工隧洞钢筋混凝土衬砌开裂特性[J]. 华中科技大学学报(自然科学版), 2020, 48(12): 114-120.

    SU Kai, WANG Boshi, WANG Wenchao, et al. Study on cracks of reinforced concrete lining of hydraulic tunnel under the combined action of water pressure and temperature load[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(12): 114-120. (in Chinese)

    [9] 韩峰, 徐磊, 金永苗. 输水隧洞内压作用下衬砌结构破坏分析[J]. 人民长江, 2020, 51(增刊1): 149-152.

    HAN Feng, XU Lei, JIN Yongmiao. Failure analysis on water diversion tunnel lining under internal pressure[J]. Yangtze River, 2020, 51(S1): 149-152. (in Chinese)

    [10] 张广权, 曾大乾, 范照伟, 等. 利用地应力评价地下储气库断层密封性方法及应用[J]. 天然气地球科学, 2021, 32(6): 923-930.

    ZHANG Guangquan, ZENG Daqian, FAN Zhaowei, et al. Method and application of in situ stress field to evaluate fault sealing of underground gas storage traps[J]. Natural Gas Geoscience, 2021, 32(6): 923-930. (in Chinese)

    [11] 张娟霞, 唐春安, 周秀艳, 等. 基于高性能计算的钢筋混凝土构件等间距裂缝形成过程研究[J]. 工程力学, 2009, 26(3): 161-167.

    ZHANG Juanxia, TANG Chunan, ZHOU Xiuyan, et al. Study on fracture spacing formation process of reinforced concrete specimen based on high performance calculation[J]. Engineering Mechanics, 2009, 26(3): 161-167. (in Chinese)

    [12] 任晓丹, 李杰. 基于损伤理论的钢筋混凝土结构裂缝分析[J]. 同济大学学报(自然科学版), 2015, 43(8): 1129-1134.

    REN Xiaodan, LI Jie. Damage theory based analysis of crack opening width for RC structures[J]. Journal of Tongji University (Natural Science), 2015, 43(8): 1129-1134. (in Chinese)

    [13] 陆新征. FRP-混凝土界面行为研究[D]. 北京: 清华大学, 2005.

    LU Xinzheng. Studies on FRP-Concrete Interface[D]. Beijing: Tsinghua University, 2005. (in Chinese)

    [14]

    MA F J, KWAN A K H. Crack width analysis of reinforced concrete members under flexure by finite element method and crack queuing algorithm[J]. Engineering Structures, 2015, 105: 209-219.

    [15] 王新敏, 李义强, 许宏伟. ANSYS结构分析单元与应用[M]. 北京: 人民交通出版社, 2011.

    WANG Xinmin, LI Yiqiang, XU Hongwei. ANSYS Structural Analysis Unit and its Application[M]. Beijing: China Communications Press, 2011. (in Chinese)

    [16] 张飞, 马建勋, 南燕. 混凝土塑性损伤模型参数的选取与验证计算[J]. 混凝土与水泥制品, 2021(1): 7-11, 29.

    ZHANG Fei, MA Jianxun, NAN Yan. Parameters selection and verification calculation of concrete plastic damage model[J]. China Concrete and Cement Products, 2021(1): 7-11, 29. (in Chinese)

    [17] 康清梁. 钢筋混凝土有限元分析[M]. 北京: 中国水利水电出版社, 1996: 130-146.

    KANG Qingliang. RC Finite Element Analysis[M]. Beijing: China Water & Power Press, 1996: 130-146. (in Chinese)

    [18]

    KOUSKSOU T, ARID A, JAMIL A, et al. Thermal behavior of building material containing microencapsulated PCM[J]. Thermochimica Acta, 2012, 550: 42-47.

    [19] 杨侗伟. 钢衬钢筋混凝土压力管道裂缝宽度计算模型研究[D]. 武汉: 湖北工业大学, 2020.

    YANG Dongwei. Research on Calculation Model of Crack Width of Steel Lined Reinforced Concrete Ppenstocks[D]. Wuhan: Hubei University of Technology, 2020. (in Chinese)

  • 本文视频

图(16)  /  表(4)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  44
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回