• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土石混合体三轴剪切试验及三维多重剪切边界面模型

曾章波, 黄华, 梅龙喜, 裴志勇, 邹熠, 方火浪

曾章波, 黄华, 梅龙喜, 裴志勇, 邹熠, 方火浪. 土石混合体三轴剪切试验及三维多重剪切边界面模型[J]. 岩土工程学报, 2023, 45(3): 644-651. DOI: 10.11779/CJGE20221160
引用本文: 曾章波, 黄华, 梅龙喜, 裴志勇, 邹熠, 方火浪. 土石混合体三轴剪切试验及三维多重剪切边界面模型[J]. 岩土工程学报, 2023, 45(3): 644-651. DOI: 10.11779/CJGE20221160
ZENG Zhangbo, HUANG Hua, MEI Longxi, PEI Zhiyong, ZOU Yi, FANG Huolang. Triaxial shear tests on soil-rock mixture and 3D multi-shear bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 644-651. DOI: 10.11779/CJGE20221160
Citation: ZENG Zhangbo, HUANG Hua, MEI Longxi, PEI Zhiyong, ZOU Yi, FANG Huolang. Triaxial shear tests on soil-rock mixture and 3D multi-shear bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 644-651. DOI: 10.11779/CJGE20221160

土石混合体三轴剪切试验及三维多重剪切边界面模型  English Version

基金项目: 

国家自然科学基金面上项目 51878605

详细信息
    作者简介:

    曾章波(1985—),男,工程师,主要从事工程设计与施工管理方面的研究工作。E-mail:zeng_zb@hdec.com

    通讯作者:

    方火浪, E-mail:fanghuolang@zju.edu.cn

  • 中图分类号: TU432

Triaxial shear tests on soil-rock mixture and 3D multi-shear bounding surface model

  • 摘要: 土石混合体是介于离散和连续介质之间的特殊地质材料,其颗粒分布特征和力学特性是控制土石混合体高填方工程稳定性的重要因素。以白鹤滩水电站库区象鼻岭移民安置点防护堤工程为依托,利用大型三轴试验仪,对两种土石混合体填筑料在3种不同围压条件下进行固结排水剪切试验,分析了土石混合体的偏差应力和体积应变随轴向应变的变化规律以及剪缩和剪胀特性。在此基础上,根据粒状土的临界状态和边界面弹塑性理论,引入了适合于土石混合体的临界黏聚力和状态参数,并基于空间随机分布微观剪切结构,建立了土石混合体状态相关三维多重剪切边界面模型。通过模型模拟结果与三轴剪切试验结果的比较,验证了该模型能够合理地描述土石混合体在低围压下的应变软化和剪胀特性,以及在高围压下的应变硬化和剪缩特性。
    Abstract: The soil-rock mixture is a special geological material between discrete and continuous media. Due to the influences of genesis, component type and content, its mechanical behavior is complex and changeable, which may lead to the excessive deformation and shear failure of high fill projects of soil-rock mixture. Therefore, it is of great theoretical significance and engineering application value to study the deformation and strength characteristics of soil-rock mixture and its constitutive models. Based on the protection embankment project of Xiangbiling resettlement site in the reservoir area of Baihetan Hydropower Station, the consolidation and drainage shear tests on two kinds of fill materials of soil-rock mixture under three different confining pressures are carried out by using the large-scale triaxial test device, and the variation laws of deviatoric stress and volumetric strain with axial strain and the characteristics of shear contraction and dilation of soil-rock mixture are analyzed. On this basis, according to the critical state and bounding surface elastoplastic theories of granular soil, the critical cohesion and state parameter suitable for the soil-rock mixture are introduced, and based on the spatially randomly distributed micro-shear structures, a state-dependent three-dimensional multi-shear bounding surface model for the soil-rock mixture is established to decompose the complex macro-deformation of the soil-rock mixture into a macro-volume deformation and a series of spatially distributed and mutually independent one-dimensional micro shear deformation. The simulated results of the model are compared with the triaxial shear test ones, which verifies that the proposed model can reasonably describe the strain softening and shear dilation characteristics of the soil-rock mixture under low confining pressure and the strain hardening and shear contraction characteristics under high confining pressure.
  • 图  1   象鼻岭移民安置点防护堤工程鸟瞰图

    Figure  1.   Aerial view of protection embankment project of Xiangbiling resettlement site

    图  2   #1料场土石混合体

    Figure  2.   Soil-rock mixture in quarry No. 1

    图  3   土石混合体级配曲线

    Figure  3.   Grain-size distribution curves of soil-rock mixture

    图  4   土石混合体三轴剪切试验结果

    Figure  4.   Triaxial shear test results of soil-rock mixture

    图  5   土石混合体剪胀角-轴向应变关系

    Figure  5.   Relationship between dilatancy angle and axial strain of soil-rock mixture

    图  6   多重剪切模型示意图

    Figure  6.   Schematic diagram of multi-shear model

    图  7   q-p平面中的临界状态线

    Figure  7.   Critical state lines in q-p plane

    图  8   e-ln(p/pa)平面中的临界状态线

    Figure  8.   Critical state lines in e-ln(p/pa) plane

    图  9   #1土石混合体的模型模拟和试验结果比较

    Figure  9.   Comparison between model simulations and test results of soil-rock mixture No. 1

    图  10   #2土石混合体的模型模拟和试验结果比较

    Figure  10.   Comparison between model simulations and test results of soil-rock mixture No. 2

    表  1   模型参数

    Table  1   Model parameters

    参数 取值
    #1土石混合体 #2土石混合体
    弹性模量 G0 70 100
    κ 0.0013 0.0009
    n 0.1 0.1
    塑性模量 λ 0.0026 0.0018
    h1 2.5 2.5
    h2 0.5 0.5
    临界状态 Mc 1.673 1.663
    cc 0.144 MPa 0.198 MPa
    ec0 0.322 0.326
    λc 0.044 0.041
    剪胀 d1 1.5 1.5
    nd 2.5 3.5
    边界应力 nb 0.5 0.5
    下载: 导出CSV
  • [1] 徐文杰, 胡瑞林, 曾如意. 水下土石混合体的原位大型水平推剪试验[J]. 岩土工程学报, 2006, 36(8): 2031-2039. http://cge.nhri.cn/cn/article/id/12105

    XU Wenjie, HU Ruilin, ZENG Ruyi. Research on horizontal push-shear in-situ test of subwater soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 36(8): 2031-2039. (in Chinese) http://cge.nhri.cn/cn/article/id/12105

    [2]

    ZHANG Z L, XU W J, XIA W, et al. Large-scale in-situ test for mechanical characterization of soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 317-322. doi: 10.1016/j.ijrmms.2015.04.001

    [3] 刘新荣, 涂义亮, 王林枫, 等. 土石混合体的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36(9): 2260-2274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709020.htm

    LIU Xin-rong, TU Yi-liang, WANG Lin-feng, FENG Hao, ZHONG Zu-liang, LEI Xiao-dan, WANG Lei. Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2260-2274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709020.htm

    [4] 吴帅峰, 蔡红, 魏迎奇, 等. 土石混合料剪切机理及抗剪强度分量特性研究[J]. 岩土工程学报, 2019, 41(增刊2): 230-234. doi: 10.11779/CJGE2019S2058

    WU Shuaifeng, CAI Hong, WEI Yingqi, et al. Shear mechanism and shear strength component characteristics of soil-stone mixtures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 230-234. (in Chinese) doi: 10.11779/CJGE2019S2058

    [5] 江强强, 徐杨青, 王浩. 不同含石量条件下土石混合体剪切变形特征的试验研究[J]. 工程地质学报, 2020, 28(5): 951-958. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005003.htm

    JIANG Qiangqiang, XU Yangqing, WANG Hao. Research on shear deformation characteristic of soil-rock mixtures under different stone contents[J]. Journal of Engineering Geology, 2020, 28(5): 951-958. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005003.htm

    [6]

    YAO Y, LI J, NI J, LIANG C, et al. Effects of gravel content and shape on shear behaviour of soil-rock mixture: Experiment and DEM modelling[J]. Computers and Geotechnics, 2022, 141: 1044762021.

    [7] 涂义亮, 刘新荣, 任青阳, 等. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm

    TU Yiliang, LIU Xinrong, REN Qingyang, et al. Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate[J]. Rock and Soil Mechanics, 2020, 41(12): 3919-3928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm

    [8] 杨忠平, 赵亚龙, 胡元鑫, 等. 块石强度对土石混合料剪切特性的影响[J]. 岩石力学与工程学报, 2021, 40(4): 814-827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104015.htm

    YANG Zhongping, ZHAO Yalong, HU Yuanxin, et al. Effect of the strength of rock blocks on the shear characteristics of soil-rock mixtures[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 814-827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104015.htm

    [9] 金磊, 曾亚武, 张森. 块石含量及形状对胶结土石混合体力学性能影响的大型三轴试验[J]. 岩土力学, 2017, 38(1): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701019.htm

    JIN Lei, ZENG Ya-wu, ZHANG Sen. Large scale triaxial tests on effects of rock block proportion and shape on mechanical properties of cemented soil-rock mixture[J]. Rock and Soil Mechanics, 2017, 38(1): 141-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701019.htm

    [10] 夏加国, 胡瑞林, 祁生文, 等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报, 2017, 36(8): 2031-2039. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708023.htm

    XIA Jia-guo, HU Rui-lin, QI Sheng-wen, et al. Large scale triaxial shear testing of soil rock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2031-2039. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708023.htm

    [11] 景宏君, 张延青, 顾行文, 等. 土石混合填料大型三轴剪切试验研究[J]. 西安科技大学学报, 2019, 39(2): 270-275. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201902013.htm

    JING Hongjun, ZHANG Yanqing, GU Xingwen, et al. Large-scale triaxial shear test of soil rock mixture[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 270-275. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201902013.htm

    [12] 陶庆东, 何兆益, 贾颖. 基于大三轴试验的土石混合体强度特性与影响因素[J]. 科学技术与工程, 2019, 19(26): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201926052.htm

    TAO Qing-dong, HE Zhao-yi, JIA Ying. Strength characteristics and influencing factors of soil-rock mixture based on large triaxial test[J]. Science Technology and Engineering, 2019, 19(26): 310-318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201926052.htm

    [13] 王涛, 刘斯宏, 宋迎俊, 孔维民. 基于骨架孔隙比的土石混合料强度变形特性[J]. 岩土力学, 2020, 41(9): 2973-2983. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009014.htm

    WANG Tao, LIU Si-hong, SONG Ying-jun, KONG Wei-min. Strength and deformation characteristics of soil-rock mixtures using skeleton void ratio[J]. Rock and Soil Mechanics, 2020, 41(9): 2973-2983. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009014.htm

    [14] 胡世兴, 靳晓光, 孙国栋, 等. 土石混合体材料大型三轴试验及PFC-FLAC耦合仿真研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3344-3356. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2034.htm

    HU Shixing, JIN Xiaoguang, SUN Guodong, et al. Triaxial test and PFC-FLAC coupling simulation study on material parameters and deformation characteristics of soil-rock mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3344-3356. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2034.htm

    [15] 李浩民, 饶锡保, 江洎洧, 等. 单剪与常规三轴条件下土石混合体强度特性差异探讨[OL]. 长江科学院院报, 2022, https://kns.cnki.net/kcms/detail/42.1171.TV.20220401.1746.014.html.

    LI Haomin, RAO Xibao, JIANG Jiwei, et al. Discussion on the differences of strength properties of soil-rock mixture under simple shear and triaxial compression[OL]. Journal of Yangtze River Scientific Research Institute, 2022, https://kns.cnki.net/kcms/detail/42.1171.TV.20220401.1746.014.html. (in Chinese)

    [16] 陈志波, 朱俊高. 一个基于砾质土的改进椭圆-抛物双屈服面模型[J]. 福州大学学报(自然科学版), 2016, 44(6): 874-880. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201606018.htm

    CHEN Zhibo, ZHU Jungao. A modified ellipse-parabola double yield surfaces model on gravelly soil[J]. Journal of Fuzhou University (Natural Science Edition), 2016, 44(6): 874-880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201606018.htm

    [17]

    BRITO A, MARANHA J R, CALDEIRA L M M S. A constitutive model for soil-rockfill mixtures[J]. Computers and Geotechnics, 2018, 95: 46-56.

    [18]

    SHI X S, ZHAO J, GAO Y. A homogenization-based state-dependent model for gap-graded granular materials with fine-dominated structure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(8): 1007-1028.

    [19] 蔡正银, 钟启明, 何宁, 等. 堰塞体状态相关剪胀理论与坝体溃决演化规律研究构想[J]. 工程科学与技术, 2021, 53(6): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202106002.htm

    CAI Zhengyin, ZHONG Qiming, HE Ning, et al. Research framework of the state-dependent dilatancy theory and breach evolution law of landslide dam[J]. Advanced Engineering Sciences, 2021, 53(6): 21-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202106002.htm

    [20]

    FANG H L, ZHENG H, ZHENG J. Micromechanics-based multimechanism bounding surface model for sands[J]. International Journal of Plasticity, 2017, 90: 242-266.

    [21] 方火浪, 蔡云惠, 王文杰. 堆石料状态相关三维多重机制边界面模型[J]. 岩土工程学报, 2018, 40(12): 2164-2171. doi: 10.11779/CJGE201812002

    FANG Huolang, CAI Yunhui, WANG Wenjie. State-dependent 3D multi-mechanism bounding surface model for rockfills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2164-2171. (in Chinese) doi: 10.11779/CJGE201812002

    [22]

    BAZANT Z P, OH B H. Microplane model for progressive fracture of concrete and rock[J]. Journal of Engineering Mechanics, ASCE, 1985, 111(4): 559-582.

    [23]

    MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.

    [24]

    WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, ASCE, 1990, 116(5): 983-1001.

    [25]

    LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-86.

  • 其他相关附件

图(10)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回