Nondestructive testing principle and technology of tension of anchor bolts
-
摘要: 基于锚杆锚固体系多接触面特征,建造室内模型研究其锚固体系振动特性。通过在锚杆无应力段顶端安装加速度传感器测试时程信号,经快速傅里叶变换获得锚杆无应力段顶端振动频谱图,其频谱图的卓越频率具有良好的可识别性,据此获得其卓越频率与锚杆张拉力、锚杆无应力长度的变化规律,其卓越频率并非锚杆张拉段横向多阶振动频率。以此为基础建立了视锚固螺母为弹性基础的锚杆弹性振动模型、锚固螺母及锚杆相对螺母与球形垫圈接触面转动的刚体振动模型,分别获得其模型频率方程,基于其识别的卓越频率求解频率方程中的刚度参数,室内与现场试验表明其刚度参数—锚杆张拉力具有良好的线性相关性和单调递增关系。进一步室内模型试验表明其刚度参数—锚杆张拉力关系特征与蝶形托盘接触不同介质、不同锚杆张拉段长度不具有明显的相关性。为此提出了锚杆张拉力无损测试原理、方法与实现的技术路线,现场小规模试验表明本文提出的方法具有可靠性。Abstract: Based on its multi-contact surface characteristics, an indoor model is built to study the vibration characteristics of the anchorage system of an anchor bolt. By installing an acceleration sensor at the top of the unstressed section of the anchor bolt to test the time-history signals, the vibrating spectra at the top of the unstressed section of the anchor bolt are obtained through the fast Fourier transform. The dominant frequencis of the spectra have good identification, then the variation law of the dominant frequencies with the tension force and the unstressed length of the anchor bolt are obtained. But the dominant frequencies in the unstressed section are not the multi-order vibrating ones of the tension section of the anchor bolt. On this basis, the elastic vibration model for the anchor bolt is established by regarding the nut as an elastic foundation, and the rigid vibration model is established by assuming the nut and the anchor bolt to rotate relative to the contact surface between the nut and the spherical washer, then the frequency equations for the models are obtained, respectively. Based on the identified dominant frequencies, the stiffness parameters in the frequency equations can be solved. The indoor and field tests show that there is a good linear correlation and monotonic increasing relationship between the stiffness parameters and the tension. Further indoor model tests show that its relationship characteristic has no obvious correlation with different media in contact with the butterfly pallet and different lengths of tension section of the the anchor bolt. Therefore, the nondestructive testing principle, method and technical route for the tension of the anchor bolt are put forward. The field small-scale tests show that the proposed method is reliable.
-
-
表 1 锚杆无应力段卓越频率与张拉力关系表(试验时无应力长度保持不变)
Table 1 Relationship between predominant frequency of unstressed section of anchor bolt and tension (length of unstressed section remains unchanged during experiment)
无应力长度/m 卓越频率/Hz 张拉力/kN 无应力长度/m 卓越频率/Hz 张拉力/kN 无应力长度/m 卓越频率/Hz 张拉力/kN 0.0895 610 10.02 0.0700 914 9.96 0.0492 1392 9.96 0.0899 632 14.97 0.0702 933 14.77 0.0497 1445 14.77 0.0896 659 19.78 0.0699 953 19.72 0.0505 1533 19.72 0.0900 676 25.06 0.0701 988 24.73 0.0502 1607 24.73 0.0901 681 29.48 0.0700 1000 29.80 0.0504 1625 29.80 0.0900 710 34.49 0.0699 1027 34.35 0.0509 1645 34.35 表 2 锚杆无应力段卓越频率与张拉力关系表(试验时张拉力保持不变)
Table 2 Relationship between predominant frequency of unstressed section of anchor bolt and tension (tension remains unchanged during experiment)
无应力长度/m 卓越频率/Hz 张拉力/kN 无应力长度/m 卓越频率/Hz 张拉力/kN 无应力长度/m 卓越频率/Hz 张拉力/kN 0.1490 278 10 0.0920 643 22 0.0590 1287 30 0.1170 396 10 0.0830 747 22 0.1500 363 46 0.1000 502 10 0.0580 1274 22 0.1200 505 46 0.0805 682 10 0.1450 341 30 0.0950 717 46 0.0620 1029 10 0.1210 447 30 0.0790 944 46 0.1300 378 22 0.0970 634 30 0.0610 1385 46 0.1150 455 22 0.0790 837 30 表 3 模型刚度参数计算结果
Table 3 Calculated results of stiffness parameters of model
无应力段长度/m 无应力段卓越频率/Hz 张拉力/kN 弹性基础模型刚度参数k0/(103N·m-2) 刚体模型刚度参数k1/(106 N·m-1) 无应力段长度/m 无应力段卓越频率/Hz 张拉力/kN 弹性基础模型刚度参数k0/(103N·m-2) 刚体模型刚度参数k1/(106N·m-1) 0.149 278 10 14 49 0.061 1385 46 29 86 0.117 396 10 13 48 0.090 610 10 15 51 0.100 502 10 14 48 0.090 632 15 16 56 0.081 682 10 13 47 0.090 659 20 18 60 0.062 1029 10 15 50 0.090 676 25 19 64 0.145 341 30 21 67 0.090 710 34 22 70 0.121 447 30 21 68 0.070 914 10 17 56 0.097 634 30 21 68 0.070 933 15 18 58 0.079 837 30 21 67 0.070 953 20 19 60 0.059 1287 30 22 67 0.070 988 25 20 65 0.130 378 22 18 60 0.070 1000 30 21 67 0.115 455 22 18 60 0.070 1027 34 22 70 0.092 643 22 19 62 0.049 1392 10 15 47 0.083 747 22 19 61 0.050 1445 15 16 52 0.058 1274 22 20 63 0.050 1533 20 20 61 0.150 363 46 31 85 0.050 1607 25 22 66 0.120 505 46 29 84 0.050 1625 30 23 68 0.095 717 46 28 84 0.051 1645 34 24 72 0.079 944 46 29 85 表 4 刚度参数与张拉力的关系特征
Table 4 Characteristics of relationship between stiffness parameters and tension
无应力长度范围/m 张拉力/kN 弹性基础模型刚度参数k0/(103N·m-2)a 刚体模型刚度参数k1/(106N·m-1)b 最小值 最大值 标准差 标准差变化范围/% 最小值 最大值 标准差 标准差变化范围/% 0.149~0.049 10 13 17 3.464 19.24 47 56 7.874 20.19 0.090~0.050 15 16 18 1.633 9.07 52 58 4.320 11.08 0.090~0.050 20 18 20 1.414 7.86 60 61 0.816 2.09 0.130~0.058 22 18 20 1.673 9.29 60 63 2.608 6.69 0.090~0.050 25 19 22 2.160 12.00 64 66 1.414 3.63 0.050~0.145 30 21 23 1.927 10.71 67 68 1.309 3.36 0.090~0.050 34 22 24 1.633 9.07 70 72 1.633 4.19 0.150~0.051 46 28 31 3.464 19.24 84 86 1.673 4.29 注:a变化值范围为13×103~31×103 N·m-2,b变化范围为47×106~86×106 N·m-1。 表 5 边坡锚杆参数、张拉力实测与计算比较表
Table 5 Parameters of anchor bolts in slope and comparison between calculated and measured tensions
无应力段长度/m 无应力段顶端测试频率/Hz 计算刚度参数k1/(106 N·m-1) 实测张拉力/kN 0.063 910 47 19.01 0.054 515 7 10.63 0.061 762 26 13.37 0.138 230 32 14.89 0.090 256 9 8.14 0.077 922 69 28.67 0.051 518 6 7.89 0.084 692 55 21.17 -
[1] 赵东平, 王卢伟, 喻渝, 等. 隧道系统锚杆研究现状与发展方向[J]. 土木工程学报, 2020, 53(8): 116-128. ZHAO Dongping, WANG Luwei, YU Yu, et al. Research status and development direction of tunnel system bolt[J]. China Civil Engineering Journal, 2020, 53(8): 116-128. (in Chinese)
[2] 岩土锚杆与喷射混凝土支护工程技术规范: GB 50086—2015[S]. 北京: 中国计划出版社, 2016. Technical Code for Engineering of Ground Anchoring and Shotcrete Support: GB 50086—2015[S]. Beijing: China Planning Press, 2016. (in Chinese)
[3] 中华人民共和国交通运输部. 交通运输部关于修改《公路水运工程试验检测管理办法》的决定[A]. 中华人民共和国国务院公报, 2017(17): 73-79. Decision of the Ministry of Transport on Amending the Administrative Measures for Testing and Testing of Highway and Waterway Engineering[A]. Gazette of the State Council of the People's Republic of China, 2017(17): 73-79. (in Chinese)
[4] 余涛, 方勇, 姚志刚, 等. 隧道预应力锚杆锚固结构承载效应及围岩力学分析[J]. 岩土工程学报, 2022, 44(6): 1069-1077. doi: 10.11779/CJGE202206011 YU Tao, FANG Yong, YAO Zhigang, et al. Bearing effect of prestressed bolt-anchored structures and mechanical analysis of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1069-1077. (in Chinese) doi: 10.11779/CJGE202206011
[5] YANG J, CHANG F K. Detection of bolt loosening in C–C composite thermal protection panels: Ⅰ. Diagnostic principle[J]. Smart Materials and Structures, 2006, 15(2): 581-590. doi: 10.1088/0964-1726/15/2/041
[6] ZHANG Z, LIU M L, LIAO Y Z, et al. Contact acoustic nonlinearity (CAN)-based continuous monitoring of bolt loosening: hybrid use of high-order harmonics and spectral sidebands[J]. Mechanical Systems and Signal Processing, 2018, 103: 280-294. doi: 10.1016/j.ymssp.2017.10.009
[7] AMERINI F, MEO M. Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods[J]. Structural Health Monitoring, 2011, 10(6): 659-672. doi: 10.1177/1475921710395810
[8] 窦传浩, 赵利平, 梁义维. 锤击声学法锚杆轴力监测装置的研究[J]. 煤炭技术, 2016, 35(4): 273-276. DOU Chuanhao, ZHAO Liping, LIANG Yiwei. Study on device of monitoring axial force of rock bolt by hammering acoustics[J]. Coal Technology, 2016, 35(4): 273-276. (in Chinese)
[9] 赵利平, 张杰, 梁义维, 等. 一种利用锤击声学法对锚杆轴力监测的装置及方法: CN105067170A[P]. 2017-08-22. ZHAO Liping, ZHANG Jie, LIANG Yiwei, et al. Device and Method for Monitoring Axial Force of Anchor Rod by Utilizing Hammering Acoustic Method: CN105067170A[P]. 2017-08-22. (in Chinese)
[10] WANG F R, SONG G B. 1D-TICapsNet: an audio signal processing algorithm for bolt early looseness detection[J]. Structural Health Monitoring, 2021, 20(5): 2828-2839. doi: 10.1177/1475921720976989
[11] WANG F R, SONG G B. A novel percussion-based method for multi-bolt looseness detection using one-dimensional memory augmented convolutional long short-term memory networks[J]. Mechanical Systems and Signal Processing, 2021, 161: 107955. doi: 10.1016/j.ymssp.2021.107955
[12] WANG F R, SONG G B. Looseness detection in cup-lock scaffolds using percussion-based method[J]. Automation in Construction, 2020, 118: 103266. doi: 10.1016/j.autcon.2020.103266
[13] WANG F R, MOBINY A, VAN NGUYEN H, et al. If structure can exclaim: a novel robotic-assisted percussion method for spatial bolt-ball joint looseness detection[J]. Structural Health Monitoring, 2021, 20(4): 1597-1608. doi: 10.1177/1475921720923147
[14] MAJUMDAR A, BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology, 1991, 113(1): 1-11. doi: 10.1115/1.2920588
[15] FU W P, HUANG Y M, ZHANG X L, et al. Experimental investigation of dynamic normal characteristics of machined joint surfaces[J]. Journal of Vibration and Acoustics, 2000, 122(4): 393-398. doi: 10.1115/1.1287589
[16] 姜东, 史勤丰, 费庆国, 等. 螺栓连接结构接触面刚度识别方法[J]. 固体火箭技术, 2014, 37(5): 688-693. JIANG Dong, SHI Qinfeng, FEI Qingguo, et al. Stiffness identification of fixed bolted-joint interface[J]. Journal of Solid Rocket Technology, 2014, 37(5): 688-693. (in Chinese)
[17] SANATI M, ALAMMARI Y, KO J H, et al. Identification of joint dynamics in lap joints[J]. Archive of Applied Mechanics, 2017, 87(1): 99-113. doi: 10.1007/s00419-016-1179-8
[18] ZHONG X G, ZHANG T Y, ZHAO C, et al. New non-destructive dynamic tensile testing of prestressing fine-rolled screw-threaded steel bars[J]. Engineering Structures, 2019, 182: 153-163. doi: 10.1016/j.engstruct.2018.12.065
-
其他相关附件