土工膜蠕变与蠕变恢复特性试验及数学模型研究

    岑威钧, 文震宇, 李邓军, 王力波

    岑威钧, 文震宇, 李邓军, 王力波. 土工膜蠕变与蠕变恢复特性试验及数学模型研究[J]. 岩土工程学报, 2022, 44(11): 2143-2150. DOI: 10.11779/CJGE202211021
    引用本文: 岑威钧, 文震宇, 李邓军, 王力波. 土工膜蠕变与蠕变恢复特性试验及数学模型研究[J]. 岩土工程学报, 2022, 44(11): 2143-2150. DOI: 10.11779/CJGE202211021
    CEN Wei-jun, WEN Zhen-yu, LI Deng-jun, WANG Li-bo. Experimental study and numerical modelling on creep and creep recovery characteristics of geomembrane[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2143-2150. DOI: 10.11779/CJGE202211021
    Citation: CEN Wei-jun, WEN Zhen-yu, LI Deng-jun, WANG Li-bo. Experimental study and numerical modelling on creep and creep recovery characteristics of geomembrane[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2143-2150. DOI: 10.11779/CJGE202211021

    土工膜蠕变与蠕变恢复特性试验及数学模型研究  English Version

    基金项目: 

    国家自然科学基金项目 51979089

    国家自然科学基金项目 51679073

    水能资源利用关键技术湖南省重点实验室开放基金项目 PKLHD202004

    详细信息
      作者简介:

      岑威钧(1977—),男,教授,博士,博士生导师,主要从事土工膜防渗与土石坝抗震方面的研究。E-mail: hhucwj@163.com

    • 中图分类号: TU47

    Experimental study and numerical modelling on creep and creep recovery characteristics of geomembrane

    • 摘要: 开展了3种不同厚度的HDPE土工膜6种荷载水平下的蠕变与蠕变恢复试验,对土工膜蠕变与蠕变恢复特性及其影响因素进行深入分析。研究表明:荷载施加与卸除的瞬间,土工膜产生瞬时变形,之后变形速率随时间逐渐变小。当荷载水平较低(如小于30%)时,土工膜蠕变随时间持续增加并较快地趋于稳定状态;当荷载水平较高(如大于40%~50%)时,土工膜将进入第二阶段蠕变,变形以恒定速率持续增长,不再稳定。当荷载水平超过20%时,完全卸载后土工膜蠕变恢复时产生残余变形,且残余变形随荷载水平增大近似呈线性增加。土工膜初始模量受荷载水平与蠕变过程的双重影响,当荷载水平上升至40%~50%时,其初始模量将显著下降超100 MPa,其中在加载初期初始模量下降约40%,经过蠕变后卸载初始模量进一步下降约30%。此外,改进建立了考虑材料黏弹性的土工膜蠕变联合元件模型及蠕变恢复模型,与试验数据对比验证了所建模型能较好地反映不同荷载水平下土工膜的蠕变及蠕变恢复过程。
      Abstract: The creep and creep recovery of HDPE geomembrane with three different thicknesses under six different load levels are investigated. The creep and creep recovery characteristics of the geomembrane and their influencing factors are deeply analyzed. The test results show that the geomembrane deforms instantly when the load is applied and removed, and then the deformation rate gradually slows down with time. When the load level is lower than 30%, the deformation of the geomembrane tends to be stable with time. When the load level is higher than 40%~50%, the strain of the geomembrane increases at a constant rate in the second stage creep. When the applied load level exceeds 20%, the geomembrane will produce residual deformation after creep recovery and complete unloading, and the residual deformation will increase approximately linearly with the increase of load level. The initial modulus of the geomembrane is influenced by both the load level and the creep process. When the load level of the geomembrane rises to 40%~50%, its initial modulus will drop significantly by more than 100 MPa. In addition, a composite element model for the creep and creep recovery of geomembrane considering the viscoelastic properties of materials is established. The numerical simulation shows that the proposed model can well reflect the creep and creep recovery process of the geomembrane under different load levels.
    • 图  1   不同厚度HDPE土工膜蠕变曲线

      Figure  1.   Curves of creep of HDPE geomembranes

      图  2   不同厚度HDPE土工膜蠕变恢复曲线

      Figure  2.   Curves of creep recovery of HDPE geomembranes

      图  3   1.0 mm厚HDPE土工膜蠕变与恢复曲线对比

      Figure  3.   Comparison of creep and recovery curves of 1.0 mm-thick HDPE geomembrane

      图  4   1.5 mm厚HDPE土工膜等时应变–荷载曲线

      Figure  4.   Isochronous stress-strain relation curves of 1.5 mm-thick HDPE geomembrane

      图  5   不同荷载水平下HDPE土工膜蠕变与蠕变恢复初始模量

      Figure  5.   Creeps and initial modulis of HDPE geomembranes under different load levels

      图  6   土工膜联合元件模型

      Figure  6.   Composite element model for geomembrane

      图  7   不同厚度HDPE土工膜试验值与模型曲线对比

      Figure  7.   Comparison of test and simulated curves for HDPE geomembranes with different thicknesses

      表  1   HDPE土工膜拉伸力学特性

      Table  1   Properties of geomembranes

      厚度/mm 屈服强度/(N·mm-1) 屈服应变/% 断裂强度/(N·mm-1) 断裂应变/%
      0.5 5.71 12.49 5.04 506.38
      1.0 10.35 22.36 11.45 416.15
      1.5 15.75 17.00 15.68 610.32
      下载: 导出CSV

      表  2   土工膜蠕变与恢复初始模量

      Table  2   Comparison of initial moduli under different load levels

      膜厚/mm 较低荷载水平/MPa 较高荷载水平/MPa Es'/Es Eu'/Eu Eu/Es Eu'/Es
      Es Es' Eu Eu'
      0.5 432.43 387.49 274.58 164.08 0.90 0.60 0.63 0.38
      1.0 387.53 381.91 194.90 155.17 0.99 0.80 0.50 0.40
      1.5 287.17 276.45 194.40 145.80 0.96 0.75 0.68 0.51
      平均值 0.95 0.71 0.60 0.43
      下载: 导出CSV

      表  3   1.0 mmHDPE土工膜蠕变及蠕变恢复模型参数

      Table  3   Parameters of creep deformation and recovery model of 1.0 mm-thick HDPE geomembrane

      荷载水平/% 蠕变 蠕变恢复
      E1/MPa E2/MPa η1/(MPa·h) η2/(MPa·h) E1/MPa E2/MPa η1/(MPa·h)
      10 406.62 711.11 531.86 406.62 720.38 1852.12
      20 381.84 475.39 1656.88 385.75 478.60 1762.96
      30 374.15 244.93 784.05 353.37 306.75 682.31
      40 205.54 262.52 611.81 53866.31 190.53 331.86 627.10
      50 192.61 164.97 381.58 28712.66 131.71 249.36 209.89
      60 186.56 176.94 450.14 26936.52 143.26 228.82 387.86
      下载: 导出CSV
    • [1]

      MÜLLER W W. HDPE Geomembranes in Geotechnics[M]. Heidelberg: Springer Berlin Heidelberg, 2007.

      [2]

      BHOWMIK R, SHAHU J T, DATTA M. Failure analysis of a geomembrane lined reservoir embankment[J]. Geotextiles and Geomembranes, 2018, 46(1): 52–65. doi: 10.1016/j.geotexmem.2017.10.005

      [3]

      NISHIGATA T, NISHIDA K, NISHIKAWA T, et al. Creep characteristic and estimation of long term strength of HDPE geomembrane liner in waste landfill[J]. Doboku Gakkai Ronbunshu, 2002, 61(722): 75–83. https://www.jstage.jst.go.jp/article/jscej1984/2002/722/2002_722_75/_article

      [4]

      KOERNER R M, HSUAN Y G, KOERNER G R, et al. Ten year creep puncture study of HDPE geomembranes protected by needle-punched nonwoven geotextiles[J]. Geotextiles and Geomembranes, 2010, 28(6): 503–513. doi: 10.1016/j.geotexmem.2009.12.014

      [5] 王广月, 李华銮, 李艳琴. 复合土工膜蠕变性能的试验研究[J]. 岩土力学, 2009, 30(6): 1599–1603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906012.htm

      WANG Guang-yue, LI Hua-luan, LI Yan-qin. Experimental research on creep properties of composite geomembrane[J]. Rock and Soil Mechanics, 2009, 30(6): 1599–1603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906012.htm

      [6] 杨武, 侍克斌, 何建新, 等. 不同膜厚复合土工膜的蠕变特性及模型研究[J]. 岩土工程学报, 2021, 43(5): 955–961. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105025.htm

      YANG Wu, SHI Ke-bin, HE Jian-xin, et al. Creep characteristics and model study of composite geomembrane with different film thicknesses[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 955–961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105025.htm

      [7]

      LEADERMAN H. Creep and creep recovery in plasticized polyvinyl chloride[J]. Industrial & Engineering Chemistry, 1943, 35(3): 374–378. doi: 10.1007/BF01530912

      [8]

      HAO A Y, CHEN Y Z, CHEN J Y. Creep and recovery behavior of kenaf/polypropylene nonwoven composites[J]. Journal of Applied Polymer Science, 2014, 131(17): 40726. doi: 10.1002/app.40726

      [9] 敬凌霄. 多轴向经编聚酯织物增强膜材力学性能研究[D]. 上海: 东华大学, 2017.

      JING Ling-xiao. Mechanical Property of Flexible Membrane Materials Strengthened by Polyester Multi-Axial Warp Knitted Fabrics[D]. Shanghai: Donghua University, 2017. (in Chinese)

      [10] 汪泽幸, 李帅, 谭冬宜, 等. 循环加载处理对聚氯乙烯涂层膜材料蠕变性能的影响[J]. 纺织学报, 2021, 42(7): 101–107. https://www.cnki.com.cn/Article/CJFDTOTAL-FZXB202107016.htm

      WANG Ze-xing, LI Shuai, TAN Dong-yi, et al. Effect of cyclic loading treatment on creep behavior of polyvinyl chloride coated membrane[J]. Journal of Textile Research, 2021, 42(7): 101–107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZXB202107016.htm

      [11] 颜世铛. 半晶态聚合物拉伸变形行为的微观机理[D]. 重庆: 重庆大学, 2013.

      YAN Shi-dang. Microscopic Mechanism of Tensile Deformation of Semicrystalline Polymer[D]. Chongqing: Chongqing University, 2013. (in Chinese)

      [12]

      MONASSE B, QUEYROY S, LHOST O. Molecular Dynamics prediction of elastic and plastic deformation of semi-crystalline polyethylene[J]. International Journal of Material Forming, 2008, 1(1): 1111–1114. doi: 10.1007/s12289-008-0174-1

      [13]

      LIU X L, HUANG Y J, DENG C, et al. Study on the creep behavior of polypropylene[J]. Polymer Engineering & Science, 2009, 49(7): 1375–1382.

      [14]

      CHENG J J, POLAK M A, PENLIDIS A. An alternative approach to estimating parameters in creep models of high-density polyethylene[J]. Polymer Engineering & Science, 2011, 51(7): 1227–1235.

      [15]

      LIU H T, POLAK M A, PENLIDIS A. A practical approach to modeling time-dependent nonlinear creep behavior of polyethylene for structural applications[J]. Polymer Engineering & Science, 2008, 48(1): 159–167. doi: 10.1002/pen.20942

      [16]

      ZHAO X, ZHANG Q H, CHEN D J, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5): 2357–2363. https://www.sciencedirect.com/science/article/pii/S0167577X13004230

      [17]

      LI Y Q, YANG T Y, YU T, et al. Synergistic effect of hybrid carbon nantube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites[J]. Journal of Materials Chemistry, 2011, 21(29): 10844–10851.

      [18]

      SAWICKI A, KAZIMIEROWICZ-FRANKOWSKA K. Creep behaviour of geosynthetics[J]. Geotextiles and Geomembranes, 1998, 16(6): 365–382. https://www.sciencedirect.com/science/article/pii/S026611449800020X

    图(7)  /  表(3)
    计量
    • 文章访问数:  179
    • HTML全文浏览量:  31
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-18
    • 网络出版日期:  2022-12-08
    • 刊出日期:  2022-10-31

    目录

      /

      返回文章
      返回